Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Persoonia ; 37: 218-403, 2016 12.
Article in English | MEDLINE | ID: mdl-28232766

ABSTRACT

Novel species of fungi described in this study include those from various countries as follows: Australia: Apiognomonia lasiopetali on Lasiopetalum sp., Blastacervulus eucalyptorum on Eucalyptus adesmophloia, Bullanockia australis (incl. Bullanockia gen. nov.) on Kingia australis, Caliciopsis eucalypti on Eucalyptus marginata, Celerioriella petrophiles on Petrophile teretifolia, Coleophoma xanthosiae on Xanthosia rotundifolia, Coniothyrium hakeae on Hakea sp., Diatrypella banksiae on Banksia formosa, Disculoides corymbiae on Corymbia calophylla, Elsinoë eelemani on Melaleuca alternifolia, Elsinoë eucalyptigena on Eucalyptus kingsmillii, Elsinoë preissianae on Eucalyptus preissiana, Eucasphaeria rustici on Eucalyptus creta, Hyweljonesia queenslandica (incl. Hyweljonesia gen. nov.) on the cocoon of an unidentified microlepidoptera, Mycodiella eucalypti (incl. Mycodiella gen. nov.) on Eucalyptus diversicolor, Myrtapenidiella sporadicae on Eucalyptus sporadica, Neocrinula xanthorrhoeae (incl. Neocrinula gen. nov.) on Xanthorrhoea sp., Ophiocordyceps nooreniae on dead ant, Phaeosphaeriopsis agavacearum on Agave sp., Phlogicylindrium mokarei on Eucalyptus sp., Phyllosticta acaciigena on Acacia suaveolens, Pleurophoma acaciae on Acacia glaucoptera, Pyrenochaeta hakeae on Hakea sp., Readeriella lehmannii on Eucalyptus lehmannii, Saccharata banksiae on Banksia grandis, Saccharata daviesiae on Daviesia pachyphylla, Saccharata eucalyptorum on Eucalyptus bigalerita, Saccharata hakeae on Hakea baxteri, Saccharata hakeicola on Hakea victoria, Saccharata lambertiae on Lambertia ericifolia, Saccharata petrophiles on Petrophile sp., Saccharata petrophilicola on Petrophile fastigiata, Sphaerellopsis hakeae on Hakea sp., and Teichospora kingiae on Kingia australis.Brazil: Adautomilanezia caesalpiniae (incl. Adautomilanezia gen. nov.) on Caesalpina echinata, Arthrophiala arthrospora (incl. Arthrophiala gen. nov.) on Sagittaria montevidensis, Diaporthe caatingaensis (endophyte from Tacinga inamoena), Geastrum ishikawae on sandy soil, Geastrum pusillipilosum on soil, Gymnopus pygmaeus on dead leaves and sticks, Inonotus hymenonitens on decayed angiosperm trunk, Pyricularia urashimae on Urochloa brizantha, and Synnemellisia aurantia on Passiflora edulis. Chile: Tubulicrinis australis on Lophosoria quadripinnata.France: Cercophora squamulosa from submerged wood, and Scedosporium cereisporum from fluids of a wastewater treatment plant. Hawaii: Beltraniella acaciae, Dactylaria acaciae, Rhexodenticula acaciae, Rubikia evansii and Torula acaciae (all on Acacia koa).India: Lepidoderma echinosporum on dead semi-woody stems, and Rhodocybe rubrobrunnea from soil. Iran: Talaromyces kabodanensis from hypersaline soil. La Réunion: Neocordana musarum from leaves of Musa sp. Malaysia: Anungitea eucalyptigena on Eucalyptus grandis × pellita, Camptomeriphila leucaenae (incl. Camptomeriphila gen. nov.) on Leucaena leucocephala, Castanediella communis on Eucalyptus pellita, Eucalyptostroma eucalypti (incl. Eucalyptostroma gen. nov.) on Eucalyptus pellita, Melanconiella syzygii on Syzygium sp., Mycophilomyces periconiae (incl. Mycophilomyces gen. nov.) as hyperparasite on Periconia on leaves of Albizia falcataria, Synnemadiella eucalypti (incl. Synnemadiella gen. nov.) on Eucalyptus pellita, and Teichospora nephelii on Nephelium lappaceum.Mexico: Aspergillus bicephalus from soil. New Zealand: Aplosporella sophorae on Sophora microphylla, Libertasomyces platani on Platanus sp., Neothyronectria sophorae (incl. Neothyronectria gen. nov.) on Sophora microphylla, Parastagonospora phoenicicola on Phoenix canariensis, Phaeoacremonium pseudopanacis on Pseudopanax crassifolius, Phlyctema phoenicis on Phoenix canariensis, and Pseudoascochyta novae-zelandiae on Cordyline australis.Panama: Chalara panamensis from needle litter of Pinus cf. caribaea. South Africa: Exophiala eucalypti on leaves of Eucalyptus sp., Fantasmomyces hyalinus (incl. Fantasmomyces gen. nov.) on Acacia exuvialis, Paracladophialophora carceris (incl. Paracladophialophora gen. nov.) on Aloe sp., and Umthunziomyces hagahagensis (incl. Umthunziomyces gen. nov.) on Mimusops caffra.Spain: Clavaria griseobrunnea on bare ground in Pteridium aquilinum field, Cyathus ibericus on small fallen branches of Pinus halepensis, Gyroporus pseudolacteus in humus of Pinus pinaster, and Pseudoascochyta pratensis (incl. Pseudoascochyta gen. nov.) from soil. Thailand: Neoascochyta adenii on Adenium obesum, and Ochroconis capsici on Capsicum annuum. UK: Fusicolla melogrammae from dead stromata of Melogramma campylosporum on bark of Carpinus betulus. Uruguay: Myrmecridium pulvericola from house dust. USA: Neoscolecobasidium agapanthi (incl. Neoscolecobasidium gen. nov.) on Agapanthus sp., Polyscytalum purgamentum on leaf litter, Pseudopithomyces diversisporus from human toenail, Saksenaea trapezispora from knee wound of a soldier, and Sirococcus quercus from Quercus sp. Morphological and culture characteristics along with DNA barcodes are provided.

2.
Braz J Microbiol ; 44(2): 613-27, 2013.
Article in English | MEDLINE | ID: mdl-24294261

ABSTRACT

Environments contaminated with heavy metals negatively impact the living organisms. Ectomycorrhizal fungi have shown important role in these impacted sites. Thus, this study aimed to evaluate the copper-resistance of ectomycorrhizal fungi isolates Pisolithus microcarpus - UFSC-Pt116; Pisolithus sp. - UFSC-PT24, Suillus sp. - UFSM RA 2.8 and Scleroderma sp. - UFSC-Sc124 to different copper doses in solid and liquid media. The copper doses tested were: 0.00, 0.25, 0.5, 0.75, 1.0 and 1.25 mmol L(-1) in the solid medium and 0.00, 0.32, 0.64 and 0.96 mmol L(-1) in the liquid medium. Copper was amended as copper sulphate in order to supplement the culture medium MNM at pH 4.8, with seven replicates to each fungus-dose combination. The fungal isolates were incubated for 30 days at 28 °C. UFSC-Pt116 showed high copper-resistance such as accessed by CL50 determinations (concentration to reduce 50% of the growth) as while as UFSC-PT24 displayed copper-resistance mechanism at 0.50 mmol L(-1) in solid medium. The UFSC-PT24 and UFSC-Sc124 isolates have increased copper-resistance in liquid medium. The higher production of extracellular pigment was detected in UFSC-Pt116 cultures. The UFSC-Pt116 and UFSC-PT24 isolates showed higher resistance for copper and produced higher mycelium biomass than the other isolates. In this way, the isolates UFSG-Pt116 and UFSC-PT24 can be important candidates to survive in copper-contaminated areas, and can show important role in plants symbiosis in these contaminated sites.


Subject(s)
Basidiomycota/drug effects , Copper/toxicity , Drug Resistance, Fungal , Mycorrhizae/drug effects , Culture Media/chemistry , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Temperature , Time Factors
3.
Braz. j. microbiol ; 44(2): 619-627, 2013.
Article in English | LILACS, VETINDEX | ID: biblio-1469597

ABSTRACT

Environments contaminated with heavy metals negatively impact the living organisms. Ectomy­corrhizal fungi have shown important role in these impacted sites. Thus, this study aimed to evaluate the copper-resistance of ectomycorrhizal fungi isolates Pisolithus microcarpus - UFSC-Pt116, Pisolithus sp. - UFSC-PT24, Suillus sp. - UFSM RA 2.8 and Scleroderma sp. - UFSC-Sc124 to different copper doses in solid and liquid media. The copper doses tested were: 0.00, 0.25, 0.5, 0.75, 1.0 and 1.25 mmol L-1 in the solid medium and 0.00, 0.32, 0.64 and 0.96 mmol L-1 in the liquid medium. Copper was amended as copper sulphate in order to supplement the culture medium MNM at pH 4.8, with seven replicates to each fungus-dose combination. The fungal isolates were incubated for 30 days at 28 °C. UFSC-Pt116 showed high copper-resistance such as accessed by CL50 determinations (concentration to reduce 50% of the growth) as while as UFSC-PT24 displayed copper-resistance mechanism at 0.50 mmol L-1 in solid medium. The UFSC-PT24 and UFSC-Sc124 isolates have increased copper-resistance in liquid medium. The higher production of extracellular pigment was detected in UFSC-Pt116 cultures. The UFSC-Pt116 and UFSC-PT24 isolates showed higher resistance for copper and produced higher mycelium biomass than the other isolates. In this way, the isolates UFSG-Pt116 and UFSC-PT24 can be important candidates to survive in copper-contaminated areas, and can show important role in plants symbiosis in these contaminated sites.


Subject(s)
Biodegradation, Environmental , Mycorrhizae , Fungi , Pigments, Biological
4.
Braz. j. microbiol ; 44(2): 613-622, 2013. graf, tab
Article in English | LILACS | ID: lil-688572

ABSTRACT

Environments contaminated with heavy metals negatively impact the living organisms. Ectomy­corrhizal fungi have shown important role in these impacted sites. Thus, this study aimed to evaluate the copper-resistance of ectomycorrhizal fungi isolates Pisolithus microcarpus - UFSC-Pt116; Pisolithus sp. - UFSC-PT24, Suillus sp. - UFSM RA 2.8 and Scleroderma sp. - UFSC-Sc124 to different copper doses in solid and liquid media. The copper doses tested were: 0.00, 0.25, 0.5, 0.75, 1.0 and 1.25 mmol L-1 in the solid medium and 0.00, 0.32, 0.64 and 0.96 mmol L-1 in the liquid medium. Copper was amended as copper sulphate in order to supplement the culture medium MNM at pH 4.8, with seven replicates to each fungus-dose combination. The fungal isolates were incubated for 30 days at 28 °C. UFSC-Pt116 showed high copper-resistance such as accessed by CL50 determinations (concentration to reduce 50% of the growth) as while as UFSC-PT24 displayed copper-resistance mechanism at 0.50 mmol L-1 in solid medium. The UFSC-PT24 and UFSC-Sc124 isolates have increased copper-resistance in liquid medium. The higher production of extracellular pigment was detected in UFSC-Pt116 cultures. The UFSC-Pt116 and UFSC-PT24 isolates showed higher resistance for copper and produced higher mycelium biomass than the other isolates. In this way, the isolates UFSG-Pt116 and UFSC-PT24 can be important candidates to survive in copper-contaminated areas, and can show important role in plants symbiosis in these contaminated sites.


Subject(s)
Basidiomycota/drug effects , Copper/toxicity , Drug Resistance, Fungal , Mycorrhizae/drug effects , Culture Media/chemistry , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Temperature , Time Factors
5.
Mycorrhiza ; 18(8): 437-442, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18695983

ABSTRACT

Chondrogaster angustisporus is a hypogeous ectomycorrhizal fungus described from fruiting bodies collected under Eucalyptus spp. in Brazil, Uruguay, and Australia. Due to its efficiency in promoting plant growth, we decided to characterize this fungus through mycorrhizal morphotyping and internal transcribed spacer (ITS) (rRNA) sequencing. DNA extracted from mycelium was amplified and sequenced using specific primers. Mycorrhizas were obtained aseptically and analyzed in terms of macroscopic and microscopic characteristics. When compared with other fungal DNA sequences available in the NBCI GenBank, the C. angustisporus sequence presented the highest similarity to an uncultured ectomycorrhizal fungus from the Seychelles. It also shows significant similarities to Gomphus, Ramaria, and Hysterangium species supporting the classification of Chondrogaster in the subclass Phallomycetidae in the gomphoid-phalloid group. The mycorrhizas were characterized by a narrow mantle with a single tissue layer densely arranged and organized as a net synenchyma with elongated hyphae. Interhyphal spaces were seen only in the external region where hyphae were more loosely organized. Bottle-shaped cystidia with bent necks were observed on the surface of the mantle. Emanating hyphae were larger than those in the mantle and presented a granular content. At regular intervals the hyphae were divided by septa with clamp connections. The Hartig net was of the common type, with typical palmetti and single hyphal rows and limited to the epidermal layer. The mycorrhizal description and the ITS sequence obtained are useful tools to identify this ectomycorrhizal fungus in culture and in association with Eucalyptus roots.


Subject(s)
Basidiomycota/classification , Basidiomycota/genetics , Eucalyptus/microbiology , Mycorrhizae/classification , Mycorrhizae/genetics , DNA, Ribosomal Spacer/genetics , Molecular Sequence Data , Mycorrhizae/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...