Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Digit Health ; 6: 1425769, 2024.
Article in English | MEDLINE | ID: mdl-38832348

ABSTRACT

Immersive media, particularly Extended Reality (XR), is at the forefront of revolutionizing the healthcare industry. Healthcare provides XR with "silver bullet" use cases that add value and societal effect to the technology. Healthcare interventions frequently require imaging or visualization to be applied correctly, and the sensation of presence that XR can provide is crucial as a training aid for healthcare learners. From anatomy to surgical training, multimodal immersion in the reality of a medical situation increases the impact of an XR resource compared to the usual approach. Thus, healthcare has become a specialized focus for the immersive media sector, with a multitude of development and research underway. This research subject, which followed on from the previous one, yielded an eclectic group of works spanning the gamut of immersive media applications in healthcare. The underlying theme in these works remains a consistent focus on calibrating, validating, verifying, and standardizing procedures, instruments, and technologies in order to constantly rigorously streamline the means and materials that will integrate immersive technologies in healthcare. In that spirit, we share the findings from this research topic as a motivator for rigorous and evidence-based use of immersive media in digital and connected health.

2.
Phys Med Biol ; 53(8): N127-36, 2008 Apr 21.
Article in English | MEDLINE | ID: mdl-18364553

ABSTRACT

Complex interventional radiology (IR) procedures contribute an increasing percentage of the overall medical radiation exposure of the population making accurate dosimetry a challenge. Magnetic resonance (MR) based polymer gel dosimetry has been widely employed in complex dosimetric problems in radiotherapy. The aim of this note is to investigate the feasibility of normoxic gel dosimetry in IR. Dose response, energy dependence and dose rate dependence were investigated in irradiation set-ups relevant to IR for a particular normoxic gel, based on methacrylic acid (MAA) as the monomer and including tetrakis-hydroxy-methyl-phosphonium chloride (THPC) as antioxidant. The gel presents a linear dose response beyond a 25 cGy threshold. No significant energy dependence was observed in the useful range of interventional radiology (80-110 kVp). A linear correlation between the gel response and dose rate was observed in the range of dose rates relevant to IR (5-8 cGy min(-1)). These results demonstrate a reduction of gel sensitivity at very low dose rate levels. A possible explanation of this effect is suggested.


Subject(s)
Gels/chemistry , Organophosphorus Compounds/chemistry , Polymers/chemistry , Radiology, Interventional/instrumentation , Radiometry , Radiotherapy/instrumentation , Dose-Response Relationship, Radiation , Equipment Design , Free Radicals , Magnetic Resonance Imaging/methods , Methacrylates/chemistry , Oxygen/chemistry , Radiology, Interventional/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...