Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Reprod Domest Anim ; 58(11): 1532-1541, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37668279

ABSTRACT

Sheep farming plays a crucial role for Mediterranean countries, wherefrom a plethora of dairy products is produced. Yet, numerous indigenous sheep breeds in temperate latitudes such as the Mediterranean present a serious drawback that milk production is impaired by the seasonality of reproduction. Towards the efforts for reduction of this phenomenon, the purpose of this study was to evaluate and compare different oestrus synchronization treatments, as well as to associate two genes alleles', namely the MTNR1A and the GDF9, with the response to those treatments. Three indigenous breeds were investigated (Florina, Chios and Karagouniko sheep) and inside each breed three different oestrus synchronization treatments were applied (A: intravaginal sponges, B: GNRH use and C: male effect). In group A, Florina ewes expressed oestrus at 90% in July and fecundity was 85%. Karagouniko and Chios ewes exhibited an oestrus expression of 100% with fecundity rates at 95% and 99%, respectively. In group B, Florina ewes expressed oestrus at 60% with fecundity at 57%, Karagouniko ewes expressed oestrus at 65% with fecundity at 54%, whereas Chios breed animals expressed oestrus at 87% with fecundity rate at 85%. In group C, 68% of the Florina breed expressed oestrus 20-25 days post ram induction, whereas this proportion was 84% and 94%, for Karagouniko and Chios breed, respectively. For the molecular analysis, partial segments of the two genes were sequenced and analysed, whereas alleles were scored based on the detected SNPs. All frequencies of the four detected SNPs in MTNR1A gene were statistically and significantly different in ewes that expressed oestrus in comparison with ewes that did not express oestrus in Florina and Karagouniko breeds concerning all treatments. Two SNP's were detected in GDF9 gene, G1 and FecG , from which, only the FecG mutation exhibited statistically significant difference in twins and triplets than in singles in Florina and Karagouniko breeds.


Subject(s)
Fertility , Reproduction , Sheep/genetics , Animals , Male , Female , Reproduction/genetics , Fertility/genetics , Estrus/physiology , Estrus Synchronization , Mutation
2.
Rep Prog Phys ; 85(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36279854

ABSTRACT

The interpretation of pulsar rotational glitches, the sudden increase in spin frequency of neutron stars, is a half-century-old challenge. The common view is that glitches are driven by the dynamics of the stellar interior, and connect in particular to the interactions between a large-scale neutron superfluid and the other stellar components. This thesis is corroborated by observational data of glitches and the post-glitch response seen in pulsars' rotation, which often involves very long timescales, from months to years. As such, glitch observables combined with consistent models incorporating the rich physics of neutron stars-from the lattice structure of their crust to the equation of state for matter beyond nuclear densities-can be very powerful at placing limits on, and reduce uncertainties of, the internal properties. This review summarises glitch observations, current data, and recent analyses, and connects them to the underlying mechanisms and microphysical parameters in the context of the most advanced theoretical glitch models to date.

3.
Trop Anim Health Prod ; 54(1): 73, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35072809

ABSTRACT

Greece has a long history in autochthonous sheep, the genetic ancestry of which has been associated with four subtypes known to inhabit Greece at the end of the nineteenth century. Among them, the Karamaniko breed is still surviving, however endangered. This study was designed in order to (a) determine the phylogenetic status, (b) to evaluate the levels of inbreeding, and (c) to assess the genetic basis of coat color of Karamaniko breed. For these purposes, the mitochondrial cyt b gene was sequenced, the AFLP methodology was applied, and the MC1R was genotyped, respectively, in 72 female sheep from the Karamaniko breed. Four different novel cyt b haplotypes were defined and three MC1R genotypes were scored, whereas inbreeding levels estimated using AFLPs by the means of relatedness coefficient (r) were 0.287, with gene diversity at the levels of 0.105. Phylogenetic analysis indicated an eastern Asian tropical and subtropical origin of the Karamaniko breed, close with breeds originating from central Turkey, or a clustering within western European or Mediterranean sheep, mirroring a recent genetic divergence, with a non-random spread towards the formation of lowland breeds. The MC1R genotypes were all associated with the white coat color, in which selective breeding has probably been based on traditional morphological characters. Finally, levels of inbreeding do not constitute an indication for a particular mating plan to prevent unpleasant phenomena such as inbreeding depression, probably because of the special attention paid by the farmers towards the avoidance of relative recurrent mating.


Subject(s)
Inbreeding , Polymorphism, Single Nucleotide , Amplified Fragment Length Polymorphism Analysis/veterinary , Animals , Demography , Female , Genetic Variation , Genotype , Greece , Phylogeny , Sheep/genetics
4.
Mon Not R Astron Soc ; 498(4): 4605-4614, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33149372

ABSTRACT

PSR J0537-6910, also known as the Big Glitcher, is the most prolific glitching pulsar known, and its spin-induced pulsations are only detectable in X-ray. We present results from analysis of 2.7 years of NICER timing observations, from 2017 August to 2020 April. We obtain a rotation phase-connected timing model for the entire timespan, which overlaps with the third observing run of LIGO/Virgo, thus enabling the most sensitive gravitational wave searches of this potentially strong gravitational wave-emitting pulsar. We find that the short-term braking index between glitches decreases towards a value of 7 or lower at longer times since the preceding glitch. By combining NICER and RXTE data, we measure a long-term braking index n = -1.25 ± 0.01. Our analysis reveals 8 new glitches, the first detected since 2011, near the end of RXTE, with a total NICER and RXTE glitch activity of 8.88 × 10-7 yr-1. The new glitches follow the seemingly unique time-to-next-glitch-glitch-size correlation established previously using RXTE data, with a slope of 5 d µHz-1. For one glitch around which NICER observes two days on either side, we search for but do not see clear evidence of spectral nor pulse profile changes that may be associated with the glitch.

5.
Sci Adv ; 1(9): e1500578, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26601293

ABSTRACT

Pulsars are known for their superb timing precision, although glitches can interrupt the regular timing behavior when the stars are young. These glitches are thought to be caused by interactions between normal and superfluid matter in the crust of the star. However, glitching pulsars such as Vela have been shown to require a superfluid reservoir that greatly exceeds that available in the crust. We examine a model in which glitches tap the superfluid in the core. We test a variety of theoretical superfluid models against the most recent glitch data and find that only one model can successfully explain up to 45 years of observational data. We develop a new technique for combining radio and x-ray data to measure pulsar masses, thereby demonstrating how current and future telescopes can probe fundamental physics such as superfluidity near nuclear saturation.

SELECTION OF CITATIONS
SEARCH DETAIL
...