Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4446, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488115

ABSTRACT

Optical pumping of molecules provides unique opportunities for control of chemical reactions at a wide range of rotational energies. This work reports a chemical reaction with extreme rotational excitation of a reactant and its kinetic characterization. We investigate the chemical reactivity for the hydrogen abstraction reaction SiO+ + H2 → SiOH+ + H in an ion trap. The SiO+ cations are prepared in a narrow rotational state distribution, including super-rotor states with rotational quantum number (j) as high as 170, using a broad-band optical pumping method. We show that the super-rotor states of SiO+ substantially enhance the reaction rate, a trend reproduced by complementary theoretical studies. We reveal the mechanism for the rotational enhancement of the reactivity to be a strong coupling of the SiO+ rotational mode with the reaction coordinate at the transition state on the dominant dynamical pathway.

2.
Sci Adv ; 9(22): eadg6936, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37256949

ABSTRACT

Kuiper Belt objects exhibit a wider color range than any other solar system population. The origin of this color diversity is unknown, but likely the result of the prolonged irradiation of organic materials by galactic cosmic rays (GCRs). Here, we combine ultrahigh-vacuum irradiation experiments with comprehensive spectroscopic analyses to examine the color evolution during GCR processing methane and acetylene under Kuiper Belt conditions. This study replicates the colors of a population of Kuiper Belt objects such as Makemake, Orcus, and Salacia. Aromatic structural units carrying up to three rings as in phenanthrene (C14H10), phenalene (C9H10), and acenaphthylene (C12H8), of which some carry structural motives of DNA and RNA connected via unsaturated linkers, were found to play a key role in producing the reddish colors. These studies demonstrate the level of molecular complexity synthesized of GCR processing hydrocarbon and hint at the role played by irradiated ice in the early production of biological precursor molecules.

3.
J Phys Chem A ; 126(5): 710-719, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34939803

ABSTRACT

The reactivity of carbonyl oxides has previously been shown to exhibit strong conformer and substituent dependencies. Through a combination of synchrotron-multiplexed photoionization mass spectrometry experiments (298 K and 4 Torr) and high-level theory [CCSD(T)-F12/cc-pVTZ-F12//B2PLYP-D3/cc-pVTZ with an added CCSDT(Q) correction], we explore the conformer dependence of the reaction of acetaldehyde oxide (CH3CHOO) with dimethylamine (DMA). The experimental data support the theoretically predicted 1,2-insertion mechanism and the formation of an amine-functionalized hydroperoxide reaction product. Tunable-vacuum ultraviolet photoionization probing of anti- or anti- + syn-CH3CHOO reveals a strong conformer dependence of the title reaction. The rate coefficient of DMA with anti-CH3CHOO is predicted to exceed that for the reaction with syn-CH3CHOO by a factor of ∼34,000, which is attributed to submerged barrier (syn) versus barrierless (anti) mechanisms for energetically downhill reactions.

4.
Nat Commun ; 12(1): 2201, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33850116

ABSTRACT

Improved optical control of molecular quantum states promises new applications including chemistry in the quantum regime, precision tests of fundamental physics, and quantum information processing. While much work has sought to prepare ground state molecules, excited states are also of interest. Here, we demonstrate a broadband optical approach to pump trapped SiO+ molecules into pure super rotor ensembles maintained for many minutes. Super rotor ensembles pumped up to rotational state N = 67, corresponding to the peak of a 9400 K distribution, had a narrow N spread comparable to that of a few-kelvin sample, and were used for spectroscopy of the previously unobserved C2Π state. Significant centrifugal distortion of super rotors pumped up to N = 230 allowed probing electronic structure of SiO+ stretched far from its equilibrium bond length.

5.
Phys Rev Lett ; 125(11): 113201, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32975973

ABSTRACT

We demonstrate rotational cooling of the silicon monoxide cation via optical pumping by a spectrally filtered broadband laser. Compared with diatomic hydrides, SiO^{+} is more challenging to cool because of its smaller rotational interval. However, the rotational level spacing and the large dipole moment of SiO^{+} allows for direct manipulation by microwaves, and the absence of hyperfine structure in its dominant isotopologue greatly reduces demands for pure quantum state preparation. These features make ^{28}Si^{16}O^{+} a good candidate for future applications such as quantum information processing. Cooling to the ground rotational state is achieved on a 100 ms timescale and attains a population of 94(3)%, with an equivalent temperature T=0.53(6) K. We also describe a novel spectral-filtering approach to cool into arbitrary rotational states and use it to demonstrate a narrow rotational population distribution (N±1) around a selected state.

6.
J Phys Chem A ; 123(17): 3634-3646, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30865470

ABSTRACT

Photolytically initiated oxidation experiments were conducted on cyclohexane and tetrahydropyran using multiplexed photoionization mass spectrometry to assess the impact of the ether functional group in the latter species on reaction mechanisms relevant to autoignition. Pseudo-first-order conditions, with [O2]0:[R•]0 > 2000, were used to ensure that R• + O2 → products were the dominant reactions. Quasi-continuous, tunable vacuum ultraviolet light from a synchrotron was employed over the range 8.0-11.0 eV to measure photoionization spectra of the products at two pressures (10 and 1520 Torr) and three temperatures (500, 600, and 700 K). Photoionization spectra of ketohydroperoxides were measured in both species and were qualitatively identical, within the limit of experimental noise, to those of analogous species formed in n-butane oxidation. However, differences were noted in the temperature dependence of ketohydroperoxide formation between the two species. Whereas the yield from cyclohexane is evident up to 700 K, ketohydroperoxides in tetrahydropyran were not detected above 650 K. The difference indicates that reaction mechanisms change due to the ether group, likely affecting the requisite •QOOH + O2 addition step. Branching fractions of nine species from tetrahydropyran were quantified with the objective of determining the role of ring-opening reactions in diminishing ketohydroperoxide. The results indicate that products formed from unimolecular decomposition of R• and •QOOH radicals via concerted C-C and C-O ß-scission are pronounced in tetrahydropyran and are insignificant in cyclohexane oxidation. The main conclusion drawn is that, under the conditions herein, ring-opening pathways reduce the already low steady-state concentration of •QOOH, which in the case of tetrahydropyran prevents •QOOH + O2 reactions necessary for ketohydroperoxide formation. Carbon balance calculations reveal that products from ring opening of both R• and •QOOH, at 700 K, account for >70% at 10 Torr and >55% at 1520 Torr. Three pathways are confirmed to contribute to the depletion of •QOOH in tetrahydropyran including (i) γ-•QOOH → pentanedial + •OH, (ii) γ-•QOOH → vinyl formate + ethene + •OH, and (iii) γ-•QOOH → 3-butenal + formaldehyde + •OH. Analogous mechanisms in cyclohexane oxidation leading to similar intermediates are compared and, on the basis of mass spectral results, confirm that no such ring-opening reactions occur. The implication from the comparison to cyclohexane is that the ether group in tetrahydropyran increases the propensity for ring-opening reactions and inhibits the formation of ketohydroperoxide isomers that precede chain-branching. On the contrary, the absence of such reactions in cyclohexane enables ketohydroperoxide formation up to 700 K and perhaps higher temperature.

7.
Phys Chem Chem Phys ; 21(26): 14042-14052, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-30652179

ABSTRACT

Ammonia and amines are emitted into the troposphere by various natural and anthropogenic sources, where they have a significant role in aerosol formation. Here, we explore the significance of their removal by reaction with Criegee intermediates, which are produced in the troposphere by ozonolysis of alkenes. Rate coefficients for the reactions of two representative Criegee intermediates, formaldehyde oxide (CH2OO) and acetone oxide ((CH3)2COO) with NH3 and CH3NH2 were measured using cavity ring-down spectroscopy. Temperature-dependent rate coefficients, k(CH2OO + NH3) = (3.1 ± 0.5) × 10-20T2 exp(1011 ± 48/T) cm3 s-1 and k(CH2OO + CH3NH2) = (5 ± 2) × 10-19T2 exp(1384 ± 96/T) cm3 s-1 were obtained in the 240 to 320 K range. Both the reactions of CH2OO were found to be independent of pressure in the 10 to 100 Torr (N2) range, and average rate coefficients k(CH2OO + NH3) = (8.4 ± 1.2) × 10-14 cm3 s-1 and k(CH2OO + CH3NH2) = (5.6 ± 0.4) × 10-12 cm3 s-1 were deduced at 293 K. An upper limit of ≤2.7 × 10-15 cm3 s-1 was estimated for the rate coefficient of the (CH3)2COO + NH3 reaction. Complementary measurements were performed with mass spectrometry using synchrotron radiation photoionization giving k(CH2OO + CH3NH2) = (4.3 ± 0.5) × 10-12 cm3 s-1 at 298 K and 4 Torr (He). Photoionization mass spectra indicated production of NH2CH2OOH and CH3N(H)CH2OOH functionalized organic hydroperoxide adducts from CH2OO + NH3 and CH2OO + CH3NH2 reactions, respectively. Ab initio calculations performed at the CCSD(T)(F12*)/cc-pVQZ-F12//CCSD(T)(F12*)/cc-pVDZ-F12 level of theory predicted pre-reactive complex formation, consistent with previous studies. Master equation simulations of the experimental data using the ab initio computed structures identified submerged barrier heights of -2.1 ± 0.1 kJ mol-1 and -22.4 ± 0.2 kJ mol-1 for the CH2OO + NH3 and CH2OO + CH3NH2 reactions, respectively. The reactions of NH3 and CH3NH2 with CH2OO are not expected to compete with its removal by reaction with (H2O)2 in the troposphere. Similarly, losses of NH3 and CH3NH2 by reaction with Criegee intermediates will be insignificant compared with reactions with OH radicals.

8.
Nat Commun ; 9(1): 4343, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30341291

ABSTRACT

Methanol is a benchmark for understanding tropospheric oxidation, but is underpredicted by up to 100% in atmospheric models. Recent work has suggested this discrepancy can be reconciled by the rapid reaction of hydroxyl and methylperoxy radicals with a methanol branching fraction of 30%. However, for fractions below 15%, methanol underprediction is exacerbated. Theoretical investigations of this reaction are challenging because of intersystem crossing between singlet and triplet surfaces - ∼45% of reaction products are obtained via intersystem crossing of a pre-product complex - which demands experimental determinations of product branching. Here we report direct measurements of methanol from this reaction. A branching fraction below 15% is established, consequently highlighting a large gap in the understanding of global methanol sources. These results support the recent high-level theoretical work and substantially reduce its uncertainties.

9.
Faraday Discuss ; 200: 313-330, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28604897

ABSTRACT

The reactions of Criegee intermediates with NO2 have been proposed as a potentially significant source of the important nighttime oxidant NO3, particularly in urban environments where concentrations of ozone, alkenes and NOx are high. However, previous efforts to characterize the yield of NO3 from these reactions have been inconclusive, with many studies failing to detect NO3. In the present work, the reactions of formaldehyde oxide (CH2OO) and acetaldehyde oxide (CH3CHOO) with NO2 are revisited to further explore the product formation over a pressure range of 4-40 Torr. NO3 is not observed; however, temporally resolved and [NO2]-dependent signal is observed at the mass of the Criegee-NO2 adduct for both formaldehyde- and acetaldehyde-oxide systems, and the structure of this adduct is explored through ab initio calculations. The atmospheric implications of the title reaction are investigated through global modelling.

10.
Phys Chem Chem Phys ; 19(21): 13731-13745, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28503692

ABSTRACT

Product formation, in particular ketohydroperoxide formation and decomposition, were investigated in time-resolved, Cl-atom initiated neopentane oxidation experiments in the temperature range 550-675 K using a photoionization time-of-flight mass spectrometer. Ionization light was provided either by Advanced Light Source tunable synchrotron radiation or ∼10.2 eV fixed energy radiation from a H2-discharge lamp. Experiments were performed both at 1-2 atm pressure using a high-pressure reactor and also at ∼9 Torr pressure employing a low-pressure reactor for comparison. Because of the highly symmetric structure of neopentane, ketohydroperoxide signal can be attributed to a 3-hydroperoxy-2,2-dimethylpropanal isomer, i.e. from a γ-ketohydroperoxide (γ-KHP). The photoionization spectra of the γ-KHP measured at low- and high pressures and varying oxygen concentrations agree well with each other, further supporting they originate from the single isomer. Measurements performed in this work also suggest that the "Korcek" mechanism may play an important role in the decomposition of 3-hydroperoxy-2,2-dimethylpropanal, especially at lower temperatures. However, at higher temperatures where γ-KHP decomposition to hydroxyl radical and oxy-radical dominates, oxidation of the oxy-radical yields a new important channel leading to acetone, carbon monoxide, and OH radical. Starting from the initial neopentyl + O2 reaction, this channel releases altogether three OH radicals. A strongly temperature-dependent reaction product is observed at m/z = 100, likely attributable to 2,2-dimethylpropanedial.

11.
J Phys Chem A ; 120(33): 6582-95, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27441526

ABSTRACT

We report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10-2000 Torr and T = 400-700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.

13.
J Phys Chem A ; 119(28): 7095-115, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-25946172

ABSTRACT

The present paper describes further development of the multiscale informatics approach to kinetic model formulation of Burke et al. (Burke, M. P.; Klippenstein, S. J.; Harding, L. B. Proc. Combust. Inst. 2013, 34, 547-555) that directly incorporates elementary kinetic theories as a means to provide reliable, physics-based extrapolation of kinetic models to unexplored conditions. Here, we extend and generalize the multiscale informatics strategy to treat systems of considerable complexity-involving multiwell reactions, potentially missing reactions, nonstatistical product branching ratios, and non-Boltzmann (i.e., nonthermal) reactant distributions. The methodology is demonstrated here for a subsystem of low-temperature propane oxidation, as a representative system for low-temperature fuel oxidation. A multiscale model is assembled and informed by a wide variety of targets that include ab initio calculations of molecular properties, rate constant measurements of isolated reactions, and complex systems measurements. Active model parameters are chosen to accommodate both "parametric" and "structural" uncertainties. Theoretical parameters (e.g., barrier heights) are included as active model parameters to account for parametric uncertainties in the theoretical treatment; experimental parameters (e.g., initial temperatures) are included to account for parametric uncertainties in the physical models of the experiments. RMG software is used to assess potential structural uncertainties due to missing reactions. Additionally, branching ratios among product channels are included as active model parameters to account for structural uncertainties related to difficulties in modeling sequences of multiple chemically activated steps. The approach is demonstrated here for interpreting time-resolved measurements of OH, HO2, n-propyl, i-propyl, propene, oxetane, and methyloxirane from photolysis-initiated low-temperature oxidation of propane at pressures from 4 to 60 Torr and temperatures from 300 to 700 K. In particular, the multiscale informed model provides a consistent quantitative explanation of both ab initio calculations and time-resolved species measurements. The present results show that interpretations of OH measurements are significantly more complicated than previously thought-in addition to barrier heights for key transition states considered previously, OH profiles also depend on additional theoretical parameters for R + O2 reactions, secondary reactions, QOOH + O2 reactions, and treatment of non-Boltzmann reaction sequences. Extraction of physically rigorous information from those measurements may require more sophisticated treatment of all of those model aspects, as well as additional experimental data under more conditions, to discriminate among possible interpretations and ensure model reliability.

14.
J Phys Chem A ; 119(28): 7742-52, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-25860092

ABSTRACT

We report a combined experimental and theoretical study of the OH + cis-2-butene and OH + trans-2-butene reactions at combustion-relevant conditions: pressures of 1-20 bar and temperatures of 400-800 K. We probe the OH radical time histories by laser-induced fluorescence and analyze these experimental measurements with aid from time-dependent master-equation calculations. Importantly, our investigation covers a temperature range where experimental data on OH + alkene chemistry in general are lacking, and interpretation of such data is challenging due to the complexity of the competing reaction pathways. Guided by theory, we unravel this complex behavior and determine the temperature- and pressure-dependent rate coefficients for the three most important OH + 2-butene reaction channels at our conditions: H abstraction, OH addition to the double bond, and back-dissociation of the OH-butene adduct.

15.
J Phys Chem A ; 119(28): 7116-29, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-25860187

ABSTRACT

Low-temperature propane oxidation was studied at P = 4 Torr and T = 530, 600, and 670 K by time-resolved multiplexed photoionization mass spectrometry (MPIMS), which probes the reactants, intermediates, and products with isomeric selectivity using tunable synchrotron vacuum UV ionizing radiation. The oxidation is initiated by pulsed laser photolysis of oxalyl chloride, (COCl)2, at 248 nm, which rapidly generates a ∼1:1 mixture of 1-propyl (n-propyl) and 2-propyl (i-propyl) radicals via the fast Cl + propane reaction. At all three temperatures, the major stable product species is propene, formed in the propyl + O2 reactions by direct HO2 elimination from both n- and i-propyl peroxy radicals. The experimentally derived propene yields relative to the initial concentration of Cl atoms are (20 ± 4)% at 530 K, (55 ± 11)% at 600 K, and (86 ± 17)% at 670 K at a reaction time of 20 ms. The lower yield of propene at low temperature reflects substantial formation of propyl peroxy radicals, which do not completely decompose on the experimental time scale. In addition, C3H6O isomers methyloxirane, oxetane, acetone, and propanal are detected as minor products. Our measured yields of oxetane and methyloxirane, which are coproducts of OH radicals, suggest a revision of the OH formation pathways in models of low-temperature propane oxidation. The experimental results are modeled and interpreted using a multiscale informatics approach, presented in detail in a separate publication (Burke, M. P.; Goldsmith, C. F.; Klippenstein, S. J.; Welz, O.; Huang H.; Antonov I. O.; Savee J. D.; Osborn D. L.; Zádor, J.; Taatjes, C. A.; Sheps, L. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions. J. Phys. Chem A. 2015, DOI: 10.1021/acs.jpca.5b01003). The model predicts the time profiles and yields of the experimentally observed primary products well, and shows satisfactory agreement for products formed mostly via secondary radical-radical reactions.

16.
J Phys Chem A ; 118(46): 10867-81, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25243837

ABSTRACT

Understanding the influence of electrons in partially filled f- and d-orbitals on bonding and reactivity is a key issue for actinide chemistry. This question can be investigated by using a combination of well-defined experimental measurements and theoretical calculations. Gas phase spectroscopic data are particularly valuable for the evaluation of theoretical models. Consequently, the primary objectives of our research have been to obtain gas phase spectra for small actinide molecules. To complement the experimental effort, we are investigating the potential for using relativistic ab initio calculations and semiempirical models to predict and interpret the electronic energy level patterns for f-element compounds. Multiple resonance spectroscopy and jet cooling techniques have been used to unravel the complex electronic spectra of Th and U compounds. Recent results for fluorides, sulfides, and nitrides are discussed.

17.
J Phys Chem A ; 117(46): 12042-8, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-23802649

ABSTRACT

Gas-phase ThS has been produced via the reaction of laser ablated Th with H2S. Rotationally resolved electronic spectra were recorded by laser-induced fluorescence (LIF) over the range 17500-24000 cm(-1). Resonance-enhanced multiphoton ionization was used in conjunction with a time-of-flight mass spectrometer to confirm the assignments of nine LIF bands to ThS. Using excitation of a ThS band centered at 22118 cm(-1), a dispersed fluorescence spectrum revealed a vibrational progression of the X(1)Σ(+) ground electronic state and the term energies of two low-lying excited states ((3)Δ1 and (3)Δ2). Two-color photoionization spectroscopy was used to study ThS(+). An accurate ionization energy for ThS was obtained (54425(3) cm(-1)); ThS(+) vibronic term energies up to v = 7 in the X(2)Σ(+) ground state and v = 3 in the (2)Δ3/2 first excited state were recorded. High-level electronic structure calculations, with inclusion of the spin-orbit interactions yielded predictions that were in good agreement with the experimental data for ThS and ThS(+). The spectroscopic properties of ThS/ThS(+) are compared with those of the valence isoelectronic pairs ThO/ThO(+), HfO/HfO(+), and HfS/HfS(+).

18.
J Phys Chem A ; 117(39): 9684-94, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-23360512

ABSTRACT

Laser induced fluorescence and resonantly enhanced multiphoton ionization spectra were recorded for UF in the 18,000-20,000 cm(-1) range. Rotationally resolved data were obtained, and the analysis of a band at 18624 cm(-1) yielded a ground state rotational constant of 0.2348 cm(-1). The electronic ground state was clearly identified as |Ω| = 4.5, confirming the theoretically predicted U(+)(5f(3)7s(2))F(-) configuration. Dispersed fluorescence spectra revealed low-lying electronic states that are assigned as |Ω| = 3.5 (435 cm(-1)) and 2.5 (650 cm(-1)). Two-color photoionization spectroscopy was used to study UF(+). The ground state and fifteen electronically excited states have been characterized. The ground state was found to be |Ω| = 4, as it is for the isoelectronic molecule UO, and with vibrational constants of ωe = 649.92 and ωexe = 1.83 cm(-1). The patterns of electronically excited states observed for UF(+), with |Ω| values ranging from 0 to 6, were qualitatively consistent with the predictions of a ligand field theory model developed for UO. The experimental data for both UF and UF(+) were reasonably well reproduced by CASSCF/CASPT2 electronic structure calculations that included spin-orbit coupling.

19.
J Chem Phys ; 137(21): 214313, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23231237

ABSTRACT

Electronic spectra for BeC have been recorded over the range 30,500-40,000 cm(-1). Laser ablation and jet-cooling techniques were used to obtain rotationally resolved data. The vibronic structure consists of a series of bands with erratic energy spacings. Two-color photoionization threshold measurements were used to show that the majority of these features originated from the ground state zero-point level. The rotational structures were consistent with the bands of (3)Π-X(3)Σ(-) transitions. Theoretical calculations indicate that the erratic vibronic structure results from strong interactions between the four lowest energy (3)Π states. Adiabatic potential energy curves were obtained from dynamically weighted MRCI calculations. Diabatic potentials and coupling matrix elements were then reconstructed from these results, and used to compute the vibronic energy levels for the four interacting (3)Π states. The predictions were sufficiently close to the observed structure to permit partial assignment of the spectra. Bands originating from the low-lying 1(5)Σ(-) state were also identified, yielding a (5)Σ(-) to X(3)Σ(-) energy interval of 2302 ± 80 cm(-1) and molecular constants for the 1(5)Π state. The ionization energy of BeC was found to be 70,779(40) cm(-1).

20.
J Chem Phys ; 136(10): 104305, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22423836

ABSTRACT

The electronic spectra of ThF and ThF(+) have been examined using laser induced fluorescence and resonant two-photon ionization techniques. The results from high-level ab initio calculations have been used to guide the assignment of these data. Spectra for ThF show that the molecule has an X (2)Δ(3/2) ground state. The upper spin-orbit component, X (2)Δ(5/2) was found at an energy of 2575(15) cm(-1). The low-lying states of ThF(+) were probed using dispersed fluorescence and pulsed field ionization-zero kinetic energy (PFI-ZEKE) photoelectron spectroscopy. Vibronic progressions belonging to four electronic states were identified. The lowest energy states were clearly (1)Σ(+) and (3)Δ(1). Although the energy ordering could not be rigorously determined, the evidence favors assignment of (1)Σ(+) as the ground state. The (3)Δ(1) state, of interest for investigation of the electron electric dipole moment, is just 315.0(5) cm(-1) above the ground state. The PFI-ZEKE measurements for ThF yielded an ionization energy of 51 581(3) cm(-1). Molecular constants show that the vibrational constant increases and the bond length shortens on ionization. This is consistent with removal of a non-bonding Th-centered 6d or 7s electron. Laser excitation of ThF(+) was used to probe electronically excited states in the range of 19,000-21,500 cm(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...