Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 36(5): 1286-1305, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28447543

ABSTRACT

Short linear motifs (SLiMs) have been recognized to perform diverse functions in a variety of regulatory proteins through the involvement in protein-protein interactions, signal transduction, cell cycle regulation, protein secretion, etc. However, detailed molecular mechanisms underlying their functions including roles of definite amino acid residues remain obscure. In our previous studies, we demonstrated that conformational dynamics of amino acid residues in oligopeptides derived from regulatory proteins such as alpha-fetoprotein (AFP), carcino-embryonic antigen (CEA), and pregnancy specific ß1-glycoproteins (PSGs) contributes greatly to their biological activities. In the present work, we revealed the 22-member linear modules composed of direct and reverse AFP14-20-like heptapeptide motifs linked by CxxGY/FxGx consensus motif within epidermal growth factor (EGF), growth factors of EGF family and numerous regulatory proteins containing EGF-like modules. We showed, first, the existence of similarity in amino acid signatures of both direct and reverse motifs in terms of their physicochemical properties. Second, molecular dynamics (MD) simulation study demonstrated that key receptor-binding residues in human EGF in the aligned positions of the direct and reverse motifs may have similar distribution of conformational probability densities and dynamic behavior despite their distinct physicochemical properties. Third, we found that the length of a polypeptide chain (from 7 to 53 residues) has no effect, while disulfide bridging and backbone direction significantly influence the conformational distribution and dynamics of the residues. Our data may contribute to the atomic level structure-function analysis and protein structure decoding; additionally, they may provide a basis for novel protein/peptide engineering and peptide-mimetic drug design.


Subject(s)
Amino Acid Motifs , Epidermal Growth Factor/chemistry , Models, Molecular , Protein Conformation , Amino Acid Sequence , Binding Sites , Epidermal Growth Factor/metabolism , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Humans , Molecular Dynamics Simulation , Protein Binding
2.
Biochimie ; 118: 82-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26300061

ABSTRACT

The short-chain alcohol dehydrogenase from the archaeon Thermococcus sibiricus (TsAdh319) exhibits adaptation to different kinds of stress: high temperature, high salinity, and the presence of organic solvents and denaturants. Previously a comparison of TsAdh319 with close structural homologs revealed an abnormally large number of charged residues on the surface of TsAdh319 tetramer. We further focused on the analysis of hydrogen bonding of TsAdh319 and its structural homologs from thermophilic and mesophilic organisms as a structural factor of adaptation to extreme environment. The calculation and analysis of the dynamics of hydrogen bonds of different kind were performed. In particular, the intramolecular hydrogen bonds of different kind according to their location and the type of a.a. residues involved in the bond were analyzed. TsAdh319 showed the greatest contribution of charged residues to the formation of surface hydrogen bonds, inner hydrogen bonding, and the bonds between different subunits compared to its structural homologs. Molecular dynamics simulations revealed that, of three enzyme molecules analyzed, TsAdh319 shows the least change in the number of hydrogen bonds of different kinds upon a temperature shift from 27 to 85 °C. The greatest changes were observed for a homologous enzyme from a mesophilic host. Only guanidine hydrochloride being a charged agent was able to deactivate TsAdh319. We suggest that the percentage of charged residues plays a key role in the resistance of TsAdh319 to environmental stress. The analysis shows that salt bridges in TsAdh319 serve as a universal instrument of stabilization under different extreme conditions.


Subject(s)
Adaptation, Physiological/physiology , Archaeal Proteins/chemistry , Hydrogen Bonding , Oxidoreductases/chemistry , Thermococcus/chemistry , Amino Acid Sequence , Archaeal Proteins/metabolism , Enzyme Stability , Hot Temperature , Models, Molecular , Molecular Sequence Data , Oxidoreductases/metabolism , Protein Conformation , Thermococcus/metabolism
3.
Comput Biol Chem ; 35(1): 34-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21310660

ABSTRACT

In this work we have studied the interaction of zervamicin IIB (ZrvIIB) with the model membranes of eukaryotes and prokaryotes using all-atom molecular dynamics. In all our simulations zervamicin molecule interacted only with lipid headgroups but did not penetrate the hydrophobic core of the bilayers. During the interaction with the prokaryotic membrane zervamicin placed by its N-termini towards the lipids and rotated at an angle of 40° relatively to the bilayer surface. In the case of eukaryotic membrane zervamicin stayed in the water and located parallel to the membrane surface. We compared hydrogen bonds between peptide and lipids and concluded that interactions of ZrvIIB with prokaryotic membrane are stronger than those with eukaryotic one. Also it was shown that two zervamicin molecules formed dimer and penetrated deeper in the area of lipid headgroups.


Subject(s)
Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Peptaibols/metabolism , Lipid Bilayers/chemistry , Molecular Structure , Peptaibols/chemistry , Phosphatidylcholines/chemistry , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...