Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Drug Metab Dispos ; 51(4): 464-479, 2023 04.
Article in English | MEDLINE | ID: mdl-36653117

ABSTRACT

We report herein an in-depth analysis of the metabolism of the novel myeloperoxidase inhibitor AZD4831 ((R)-1-(2-(1-aminoethyl)-4-chlorobenzyl)-2-thioxo-2,3-dihydro-1H-pyrrolo[3,2-d]pyrimidin-4(5H)-one) in animals and human. Quantitative and qualitative metabolite profiling were performed on samples collected from mass balance studies in rats and humans. Exposure of circulating human metabolites with comparable levels in animal species used in safety assessment were also included. Structural characterization of 20 metabolites was performed by liquid chromatography high-resolution mass spectrometry, and quantification was performed by either 14C analysis using solid phase scintillation counting or accelerator mass spectrometry and, where available, authentication with synthesized metabolite standards. A complete mass balance study in rats is presented, while data from dogs and human are limited to metabolite profiling and characterization. The metabolism of AZD4831 is mainly comprised of reactions at the primary amine nitrogen and the thiourea sulfur, resulting in several conjugated metabolites with or without desulfurization. A carbamoyl glucuronide metabolite of AZD4831 (M7) was the most abundant plasma metabolite in both human healthy volunteers and heart failure patients after single and repeated dose administration of AZD4831, accounting for 75%-80% of the total drug-related exposure. Exposures to M7 and other human circulating metabolites were covered in rats and/or dogs, the two models most frequently used in the toxicology studies, and were also highly abundant in the mouse, the second model other than rat used in carcinogenicity studies. The carbamoyl glucuronide M7 was the main metabolite in rat bile, while a desulfurized and cyclized metabolite (M5) was abundant in rat plasma and excreta. SIGNIFICANCE STATEMENT: The biotransformation of AZD4831, a novel myeloperoxidase inhibitor inhibiting xanthine derivative bearing thiourea and primary aliphatic amine functions, is described. Twenty characterized metabolites demonstrate the involvement of carbamoylation with glucuronidation, desulfurization, and cyclization as main biotransformation reactions. The carbamoyl glucuronide was the main metabolite in human plasma, likely governed by a significant species difference in plasma protein binding for this metabolite, but this and other human plasma metabolites were covered in animals used in the toxicity studies.


Subject(s)
Glucuronides , Peroxidase , Humans , Rats , Mice , Animals , Dogs , Biotransformation , Chromatography, High Pressure Liquid , Amines
3.
J Med Chem ; 65(17): 11485-11496, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36005476

ABSTRACT

Myeloperoxidase is a promising therapeutic target for treatment of patients suffering from heart failure with preserved ejection fraction (HFpEF). We aimed to discover a covalent myeloperoxidase inhibitor with high selectivity for myeloperoxidase over thyroid peroxidase, limited penetration of the blood-brain barrier, and pharmacokinetics suitable for once-daily oral administration at low dose. Structure-activity relationship, biophysical, and structural studies led to prioritization of four compounds for in-depth safety and pharmacokinetic studies in animal models. One compound (AZD4831) progressed to clinical studies on grounds of high potency (IC50, 1.5 nM in vitro) and selectivity (>450-fold vs thyroid peroxidase in vitro), the mechanism of irreversible inhibition, and the safety profile. Following phase 1 studies in healthy volunteers and a phase 2a study in patients with HFpEF, a phase 2b/3 efficacy study of AZD4831 in patients with HFpEF started in 2021.


Subject(s)
Heart Failure , Animals , Heart Failure/drug therapy , Humans , Iodide Peroxidase/therapeutic use , Peroxidase , Pyrimidines , Pyrroles , Stroke Volume/physiology
4.
J Biol Chem ; 295(15): 5136-5151, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32132173

ABSTRACT

Increased plasma concentrations of lipoprotein(a) (Lp(a)) are associated with an increased risk for cardiovascular disease. Lp(a) is composed of apolipoprotein(a) (apo(a)) covalently bound to apolipoprotein B of low-density lipoprotein (LDL). Many of apo(a)'s potential pathological properties, such as inhibition of plasmin generation, have been attributed to its main structural domains, the kringles, and have been proposed to be mediated by their lysine-binding sites. However, available small-molecule inhibitors, such as lysine analogs, bind unselectively to kringle domains and are therefore unsuitable for functional characterization of specific kringle domains. Here, we discovered small molecules that specifically bind to the apo(a) kringle domains KIV-7, KIV-10, and KV. Chemical synthesis yielded compound AZ-05, which bound to KIV-10 with a Kd of 0.8 µm and exhibited more than 100-fold selectivity for KIV-10, compared with the other kringle domains tested, including plasminogen kringle 1. To better understand and further improve ligand selectivity, we determined the crystal structures of KIV-7, KIV-10, and KV in complex with small-molecule ligands at 1.6-2.1 Å resolutions. Furthermore, we used these small molecules as chemical probes to characterize the roles of the different apo(a) kringle domains in in vitro assays. These assays revealed the assembly of Lp(a) from apo(a) and LDL, as well as potential pathophysiological mechanisms of Lp(a), including (i) binding to fibrin, (ii) stimulation of smooth-muscle cell proliferation, and (iii) stimulation of LDL uptake into differentiated monocytes. Our results indicate that a small-molecule inhibitor targeting the lysine-binding site of KIV-10 can combat the pathophysiological effects of Lp(a).


Subject(s)
Apolipoproteins A/antagonists & inhibitors , Apolipoproteins A/metabolism , Fibrin/metabolism , Kringles/drug effects , Small Molecule Libraries/pharmacology , Amino Acid Sequence , High-Throughput Screening Assays , Humans , Ligands , Models, Molecular , Protein Binding , Protein Domains , Sequence Homology
5.
Bioorg Med Chem Lett ; 29(10): 1241-1245, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30879840

ABSTRACT

Atrial fibrillation (AF) is a major cause of stroke, heart failure, sudden death and cardiovascular morbidity. The Kv1.5 potassium channel conducts the IKur current and has been demonstrated to be predominantly expressed in atrial versus ventricular tissue. Blockade of Kv1.5 has been proven to be an effective approach to restoring and maintaining sinus rhythm in preclinical models of AF. In the clinical setting, however, the therapeutic value of this approach remains an open question. Herein, we present synthesis and optimization of a novel series of 1,2-bis(aryl)ethane-1,2-diamines with selectivity for Kv1.5 over other potassium ion channels. The effective refractory period in the right atrium (RAERP) in a rabbit PD model was investigated for a selection of potent and selective compounds with balanced DMPK properties. The most advanced compound (10) showed nanomolar potency in blocking Kv1.5 in human atrial myocytes and based on the PD data, the estimated dose to man is 700 mg/day. As previously reported, 10 efficiently converted AF to sinus rhythm in a dog disease model.


Subject(s)
Anti-Arrhythmia Agents/chemistry , Atrial Fibrillation/drug therapy , Ethylenediamines/chemistry , Potassium Channel Blockers/chemistry , Animals , Anti-Arrhythmia Agents/pharmacology , CHO Cells , Cricetulus , Disease Models, Animal , Dogs , Drug Evaluation, Preclinical , Ethylenediamines/pharmacology , Heart Atria/drug effects , Humans , Kv1.5 Potassium Channel/metabolism , Molecular Structure , Myocytes, Cardiac/drug effects , Potassium Channel Blockers/pharmacology , Rabbits , Structure-Activity Relationship
6.
Org Lett ; 19(20): 5541-5544, 2017 10 20.
Article in English | MEDLINE | ID: mdl-28981292

ABSTRACT

The organocatalytic asymmetric transfer hydrogenation of N-alkyl aryl imino esters for the direct synthesis of N-alkylated arylglycinate esters is reported. High yields and enantiomeric ratios were obtained, and tolerance to a diverse set of functional groups facilitated the preparation of more complex molecules as well as intermediates for active pharmaceuticals. A simple recycling protocol was developed for the Brønsted acid catalyst which could be reused through five cycles with no loss of activity or selectivity.

7.
Blood ; 125(22): 3484-90, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25788700

ABSTRACT

Ticagrelor is a direct-acting reversibly binding P2Y12 antagonist and is widely used as an antiplatelet therapy for the prevention of cardiovascular events in acute coronary syndrome patients. However, antiplatelet therapy can be associated with an increased risk of bleeding. Here, we present data on the identification and the in vitro and in vivo pharmacology of an antigen-binding fragment (Fab) antidote for ticagrelor. The Fab has a 20 pM affinity for ticagrelor, which is 100 times stronger than ticagrelor's affinity for its target, P2Y12. Despite ticagrelor's structural similarities to adenosine, the Fab is highly specific and does not bind to adenosine, adenosine triphosphate, adenosine 5'-diphosphate, or structurally related drugs. The antidote concentration-dependently neutralized the free fraction of ticagrelor and reversed its antiplatelet activity both in vitro in human platelet-rich plasma and in vivo in mice. Lastly, the antidote proved effective in normalizing ticagrelor-dependent bleeding in a mouse model of acute surgery. This specific antidote for ticagrelor may prove valuable as an agent for patients who require emergency procedures.


Subject(s)
Adenosine/analogs & derivatives , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/pharmacology , Antidotes/chemistry , Antidotes/pharmacology , Adenosine/antagonists & inhibitors , Adenosine/immunology , Animals , Antibodies/isolation & purification , Antibodies/metabolism , Antibody Specificity , Broadly Neutralizing Antibodies , CHO Cells , Cricetinae , Cricetulus , Crystallography, X-Ray , Hemorrhage/prevention & control , Humans , Immunoglobulin Fab Fragments/pharmacology , Mice , Models, Molecular , Platelet Aggregation/drug effects , Protein Engineering , Ticagrelor
8.
Bioorg Med Chem Lett ; 24(13): 2963-8, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24835983

ABSTRACT

Modification of a series of P2Y12 receptor antagonists by replacement of the ester functionality was aimed at minimizing the risk of in vivo metabolic instability and pharmacokinetic variability. The resulting ketones were then optimized for their P2Y12 antagonistic and anticoagulation effects in combination with their physicochemical and absorption profiles. The most promising compound showed very potent antiplatelet action in vivo. However, pharmacodynamic-pharmacokinetic analysis did not reveal a significant separation between its anti-platelet and bleeding effects. The relevance of receptor binding kinetics to the in vivo profile is described.


Subject(s)
Blood Platelets/drug effects , Fibrinolytic Agents/pharmacology , Ketones/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Receptors, Purinergic P2Y12/metabolism , Animals , CHO Cells , Caco-2 Cells , Cricetulus , Dogs , Dose-Response Relationship, Drug , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/chemistry , Humans , Ketones/administration & dosage , Ketones/chemistry , Kinetics , Molecular Structure , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation Inhibitors/chemistry , Structure-Activity Relationship
9.
J Med Chem ; 56(17): 7015-24, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23899349

ABSTRACT

Synthesis and structure-activity relationships of ethyl 6-aminonicotinate acyl sulfonamides, which are potent antagonists of the P2Y12 receptor, are presented. Shifting from 5-chlorothienyl to benzyl sulfonamides significantly increased the potency in the residual platelet count assay. Evaluation of PK parameters in vivo in dog for six compounds showed a 10-fold higher clearance for the azetidines than for the matched-pair piperidines. In a modified Folts model in dog, both piperidine 3 and azetidine 13 dose-dependently induced increases in blood flow and inhibition of ADP-induced platelet aggregation with antithrombotic ED50 values of 3.0 and 10 µg/kg/min, respectively. The doses that induced a larger than 3-fold increase in bleeding time were 33 and 100 µg/kg/min for 3 and 13, respectively. Thus, the therapeutic index (TI) was ≥ 10 for both compounds. On the basis of these data, compound 3 was progressed into human clinical trials as candidate drug AZD1283.


Subject(s)
Niacin/analogs & derivatives , Receptors, Purinergic P2Y12/drug effects , Sulfonamides/pharmacology , Thrombosis/prevention & control , Animals , CHO Cells , Cricetinae , Cricetulus , Dogs , Humans , Niacin/pharmacology
10.
J Comb Chem ; 9(3): 477-86, 2007.
Article in English | MEDLINE | ID: mdl-17348714

ABSTRACT

A library of novel and diverse P-chirogenic phosphine ligands containing a triazole moiety (ChiraClick ligands) were prepared in high yield in a modular fashion that allows for variation of both the phosphine and the triazole structure, as well as giving access to the two enantiomers of the ligand.


Subject(s)
Combinatorial Chemistry Techniques/methods , Phosphines/chemical synthesis , Triazoles/chemistry , Ligands , Molecular Structure , Phosphines/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...