Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 28(3): 1201-1209, 2023 03.
Article in English | MEDLINE | ID: mdl-36494461

ABSTRACT

Schizophrenia (SZ) is associated with an increased risk of life-long cognitive impairments, age-related chronic disease, and premature mortality. We investigated evidence for advanced brain ageing in adult SZ patients, and whether this was associated with clinical characteristics in a prospective meta-analytic study conducted by the ENIGMA Schizophrenia Working Group. The study included data from 26 cohorts worldwide, with a total of 2803 SZ patients (mean age 34.2 years; range 18-72 years; 67% male) and 2598 healthy controls (mean age 33.8 years, range 18-73 years, 55% male). Brain-predicted age was individually estimated using a model trained on independent data based on 68 measures of cortical thickness and surface area, 7 subcortical volumes, lateral ventricular volumes and total intracranial volume, all derived from T1-weighted brain magnetic resonance imaging (MRI) scans. Deviations from a healthy brain ageing trajectory were assessed by the difference between brain-predicted age and chronological age (brain-predicted age difference [brain-PAD]). On average, SZ patients showed a higher brain-PAD of +3.55 years (95% CI: 2.91, 4.19; I2 = 57.53%) compared to controls, after adjusting for age, sex and site (Cohen's d = 0.48). Among SZ patients, brain-PAD was not associated with specific clinical characteristics (age of onset, duration of illness, symptom severity, or antipsychotic use and dose). This large-scale collaborative study suggests advanced structural brain ageing in SZ. Longitudinal studies of SZ and a range of mental and somatic health outcomes will help to further evaluate the clinical implications of increased brain-PAD and its ability to be influenced by interventions.


Subject(s)
Schizophrenia , Adult , Humans , Male , Adolescent , Young Adult , Middle Aged , Aged , Female , Prospective Studies , Magnetic Resonance Imaging , Brain/pathology , Aging
2.
Psychiatry Res Neuroimaging ; 319: 111425, 2022 01.
Article in English | MEDLINE | ID: mdl-34891023

ABSTRACT

Aggression can have a hedonistic aspect in predisposed individuals labeled as appetitive aggression. The present study investigates the neurobiological correlates of this appetitive type of aggression in non-clinical samples from community. Applying functional magnet resonance imaging (fMRI), we tested whether 20 martial artists compared to 26 controls had a higher activation in the nucleus accumbens (NAcc), a central part of the dopaminergic, mesolimbic reward system. Subjects had to watch violent vs. neutral pictures representing appetitive aggression. The affinity towards hedonistic violence was assessed by the Appetitive and Facilitative Aggression Scale (AFAS). Furthermore, the subjects rated all the pictures with regard to how pleasant and violent they were. The martial artists reported a higher AFAS-score and a more positive perception of violent pictures. On the neural level, across all subjects, there was a significant positive correlation between the AFAS-score and the activation in the left NAcc and an inverse association with the activation of the right NAcc when watching violent compared to neutral pictures. This lateralization effect indicates a different processing of hedonistic aspects of aggression in the two hemispheres.


Subject(s)
Aggression , Nucleus Accumbens , Aggression/physiology , Humans , Magnetic Resonance Imaging/methods , Nucleus Accumbens/diagnostic imaging , Nucleus Accumbens/physiology , Reward , Violence
3.
Eur Neuropsychopharmacol ; 27(9): 928-939, 2017 09.
Article in English | MEDLINE | ID: mdl-28651857

ABSTRACT

Multiple genetic variations impact on risk for schizophrenia. Recent analyses by the Psychiatric Genomics Consortium (PGC2) identified 128 SNPs genome-wide associated with the disorder. Furthermore, attention and working memory deficits are core features of schizophrenia, are heritable and have been associated with variation in glutamatergic neurotransmission. Based on this evidence, in a sample of healthy volunteers, we used SNPs associated with schizophrenia in PGC2 to construct a Polygenic-Risk-Score (PRS) reflecting the cumulative risk for schizophrenia, along with a Polygenic-Risk-Score including only SNPs related to genes implicated in glutamatergic signaling (Glu-PRS). We performed Factor Analysis for dimension reduction of indices of cognitive performance. Furthermore, both PRS and Glu-PRS were used as predictors of cognitive functioning in the domains of Attention, Speed of Processing and Working Memory. The association of the Glu-PRS on brain activity during the Variable Attention Control (VAC) task was also explored. Finally, in a second independent sample of healthy volunteers we sought to confirm the association between the Glu-PRS and both performance in the domain of Attention and brain activity during the VAC.We found that performance in Speed of Processing and Working Memory was not associated with any of the Polygenic-Risk-Scores. The Glu-PRS, but not the PRS was associated with Attention and brain activity during the VAC. The specific effects of Glu-PRS on Attention and brain activity during the VAC were also confirmed in the replication sample.Our results suggest a pathway specificity in the relationship between genetic risk for schizophrenia, the associated cognitive dysfunction and related brain processing.


Subject(s)
Attention/physiology , Brain/physiology , Glutamic Acid/metabolism , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Schizophrenia/genetics , Adult , Brain/diagnostic imaging , Brain Mapping , Factor Analysis, Statistical , Female , Genetic Predisposition to Disease , Humans , Magnetic Resonance Imaging , Male , Memory, Short-Term/physiology , Neuropsychological Tests , Schizophrenic Psychology , Thinking/physiology , White People/genetics
4.
PLoS One ; 11(10): e0165301, 2016.
Article in English | MEDLINE | ID: mdl-27798669

ABSTRACT

OBJECTIVE: Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions. METHODS: Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein's Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia. RESULTS: Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior. CONCLUSIONS: These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition.


Subject(s)
Apathy/physiology , Basal Ganglia/physiopathology , Cognition/physiology , Healthy Volunteers , Nerve Net/physiopathology , Prefrontal Cortex/physiopathology , Task Performance and Analysis , Adult , Attention , Behavior , Brain Mapping , Demography , Female , Humans , Magnetic Resonance Imaging , Male , Memory , Memory, Short-Term
5.
Neuropsychopharmacology ; 40(7): 1600-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25563748

ABSTRACT

Dopamine D2 and serotonin 5-HT2A receptors contribute to modulate prefrontal cortical physiology and response to treatment with antipsychotics in schizophrenia. Similarly, functional variation in the genes encoding these receptors is also associated with these phenotypes. In particular, the DRD2 rs1076560 T allele predicts a lower ratio of expression of D2 short/long isoforms, suboptimal working memory processing, and better response to antipsychotic treatment compared with the G allele. Furthermore, the HTR2A T allele is associated with lower 5-HT2A expression, impaired working memory processing, and poorer response to antipsychotics compared with the C allele. Here, we investigated in healthy subjects whether these functional polymorphisms have a combined effect on prefrontal cortical physiology and related cognitive behavior linked to schizophrenia as well as on response to treatment with second-generation antipsychotics in patients with schizophrenia. In a total sample of 620 healthy subjects, we found that subjects with the rs1076560 T and rs6314 T alleles have greater fMRI prefrontal activity during working memory. Similar results were obtained within the attentional domain. Also, the concomitant presence of the rs1076560 T/rs6314 T alleles also predicted lower behavioral accuracy during working memory. Moreover, we found that rs1076560 T carrier/rs6314 CC individuals had better responses to antipsychotic treatment in two independent samples of patients with schizophrenia (n=63 and n=54, respectively), consistent with the previously reported separate effects of these genotypes. These results indicate that DRD2 and HTR2A genetic variants together modulate physiological prefrontal efficiency during working memory and also modulate the response to antipsychotics. Therefore, these results suggest that further exploration is needed to better understand the clinical consequences of these genotype-phenotype relationships.


Subject(s)
Antipsychotic Agents/pharmacology , Brain/drug effects , Memory, Short-Term/drug effects , Polymorphism, Single Nucleotide/genetics , Receptor, Serotonin, 5-HT2A/genetics , Receptors, Dopamine D2/genetics , Adult , Analysis of Variance , Brain/blood supply , Cohort Studies , Female , Genotype , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Memory, Short-Term/physiology , Neuropsychological Tests , Oxygen/blood , Pharmacogenetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...