Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2767: 175-188, 2024.
Article in English | MEDLINE | ID: mdl-36773273

ABSTRACT

Human pluripotent stem cells (hPSCs) form an ideal system to study the formation of placental cells, from an undifferentiated human embryonic stem cell state. The conventional human in vitro model systems to study the human placenta cannot be employed for understanding placental dysfunctions or the development of specialized placental cell types. Hence, human PSCs make an ideal model system to study human placental development and disorders. Here, we describe an efficient and validated protocol to reproducibly study the formation of human cytotrophoblasts (CTBs) and syncytiotrophoblast (STBs) from undifferentiated hPSCs. CTBs are the trophoblast stem cells that can differentiate into specialized placental cell types such as STBs. The multinucleated STB plays vital role in the exchange of nutrients and gases across the placenta and secretes several hormones during pregnancy, such as human chorionic gonadotropin ß (hCGß). Here we describe two methods of seeding the hPSCs: chemical (clumps method) and enzymatic methods (single cells) to differentiate them to CTB and STB, activating BMP (B) signaling and inhibiting ACTIVIN/NODAL and FGF signaling pathways (2i), thus naming our protocol as "B2i" (Sudheer et al., Stem Cells Dev 21:2987-3000, 2012). This protocol forms the perfect model system for understanding in vitro placentation, modeling diseases arising from abnormal placentation that cause complications such as miscarriage, preeclampsia or intrauterine growth restriction (IUGR), and drug discovery for placental disorders.


Subject(s)
Placenta Diseases , Pluripotent Stem Cells , Humans , Pregnancy , Female , Placenta , Trophoblasts , Placentation/physiology , Cell Differentiation/physiology , Placenta Diseases/metabolism
2.
Sci Rep ; 12(1): 6614, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35459886

ABSTRACT

Date palm fruits (Phoenix dactylifera L.) were found to contain high levels of allomelanin (1.2-5.1%). The melanin is localized in the tanniferous cells between the inner and outer mesocarp tissues of the fruit. The melanin, extracted with 2 M sodium hydroxide, consisted of amorphous graphene-like granular structures of irregular shape and variable size. The date fruit melanin mainly comprises carbon (64.6%) and oxygen (30.6) but no nitrogen, and was thermally stable. It has radical scavenging (63.6-75.1 IC50, µg/mL), antimicrobial (250-1000 µg/mL), hypoglycemic (51.8-58.2%), and angiotensin-converting-enzyme inhibitory (65.8%) effects. The high level of melanin in date fruits highlights the importance of investigating its dietary intake and its impact on nutrition. This study also suggests that date fruit melanin can be a functional ingredient in foods, food packages, pharmaceuticals, and cosmetics.


Subject(s)
Phoeniceae , Fruit/chemistry , Melanins/analysis , Phenols/analysis , Phoeniceae/chemistry , Plant Extracts/pharmacology
3.
Sci Rep ; 10(1): 21767, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303871

ABSTRACT

Date fruits vary widely in the hardness of their edible parts and they are classified accordingly into soft, semi-dry, and dry varieties. Fruit texture, a significant parameter in determining consumer acceptance, is related to the tissue structure and chemical composition of the fruit, mainly the ratio of sucrose to reducing sugars. This study aimed to understand the relationship between the chemical composition, microstructure, and texture profile of 10 major Emirati date fruits. The soluble sugars, glucose and fructose, represent ca 80 g/100 g of the fruits on the basis of dry weight (DW) while the dietary fiber contents varied 5.2-7.4 g/100 dg D.W. with lignin being the main determinant of the variability. The textures of the samples were studied using instrumental texture profile analysis. While no correlation was found between the soluble sugar and texture parameters in this study, the different fiber constituents correlated variably with the different parameters of date fruit texture. Lignin, arabinoxylan, galactomannan, and pectin were found to correlate significantly with fruit hardness and the related parameters, gumminess and chewiness. Both lignin and arabinoxylan correlated with resilience, and arabinoxylan exhibited a strong correlation with cohesiveness.


Subject(s)
Dietary Fiber/analysis , Hardness , Phoeniceae/chemistry , Phoeniceae/classification , Fructose/analysis , Galactose/analogs & derivatives , Glucose/analysis , Lignin/analysis , Mannans/analysis , Microscopy , Pectins/analysis , Phoeniceae/ultrastructure , Sucrose/analysis , Xylans/analysis
4.
Front Plant Sci ; 11: 977, 2020.
Article in English | MEDLINE | ID: mdl-32733510

ABSTRACT

Date fruits are special representative of hard fruits and one of the richest sources of dietary silica and edible lignin, which are believed to have several health benefits. In this study, we used optical and scanning electron microscopy (SEM) to investigate the presence of associations between silicification and lignification in date fruits (Phoenix dactylifera, L.). Phloroglucinol staining was employed to observe lignification in date fruits, while silicification was studied by SEM of whole fruits and their acid digesta. This work revealed the presence of heterogeneity and complexity in the silica phytoliths and the lignified structures in date fruits. It was found that lignin exists independently of silica in the secondary cell walls of parenchymal and sclereid cells and that silica exists independently of lignin in the spheroid phytoliths that surround the sclereid cells. Interestingly, a small proportion of lignin and silica seemed to co-exist as partners in the spiral coils of the tracheid phytoliths.

5.
Biofouling ; 35(1): 89-103, 2019 01.
Article in English | MEDLINE | ID: mdl-30835535

ABSTRACT

In the present study, the antimicrobial and antibiofilm efficacy of toluidine blue (TB) encapsulated in mesoporous silica nanoparticles (MSN) was investigated against Pseudomonas aeruginosa and Staphylococcus aureus treated with antimicrobial photodynamic therapy (aPDT) using a red diode laser 670 nm wavelength, 97.65 J cm-2 radiant exposure, 5 min). Physico-chemical techniques (UV-visible (UV-vis) absorption, photoluminescence emission, excitation, and FTIR) and high-resolution transmission electron microscopy (HR-TEM) were employed to characterize the conjugate of TB encapsulated in MSN (TB MSN). TB MSN showed maximum antimicrobial activities corresponding to 5.03 and 5.56 log CFU ml-1 reductions against P. aeruginosa and S. aureus, respectively, whereas samples treated with TB alone showed 2.36 and 2.66 log CFU ml-1 reductions. Anti-biofilm studies confirmed that TB MSN effectively inhibits biofilm formation and production of extracellular polymeric substances by P. aeruginosa and S. aureus.


Subject(s)
Biofilms/drug effects , Photochemotherapy/methods , Pseudomonas aeruginosa/drug effects , Silicon Dioxide/chemistry , Staphylococcus aureus/drug effects , Tolonium Chloride/pharmacology , Anti-Bacterial Agents/pharmacology , Light , Metal Nanoparticles/chemistry , Nanoparticles , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Staphylococcal Infections/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...