Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36500567

ABSTRACT

Oroxylum indicum is a traditionally used plant in Ayurvedic and folk medicines. The plant is useful for the management of gastrointestinal diseases as well as skin diseases. In the present study, we analyzed the antitumor potential of O. indicum in Dalton's lymphoma ascites tumor cells (DLA) and Ehrlich ascites carcinoma (EAC)-induced solid and ascites tumors. Further, the potential of O. indicum extract (OIM) on skin papilloma induction by dimethyl benz(a) anthracene (DMBA) and croton oil was evaluated. The chemical composition of the extract was analyzed using UPLC-Q-TOF-MS. The predominant compounds present in the extract were demethoxycentaureidin 7-O-rutinoside, isorhamnetin-3-O-rutinoside, baicalein-7-O-glucuronide, 5,6,7-trihydroxyflavone, 3-Hydroxy-3',4',5'-trimethoxyflavone, 5,7-dihydroxy-3-(4-methoxyphenyl) chromen-4-one, and 4'-Hydroxy-5,7-dimethoxyflavanone. Treatment with high-dose OIM enhanced the percentage of survival in ascites tumor-bearing mice by 34.97%. Likewise, high and low doses of OIM reduced the tumor volume in mice by 61.84% and 54.21%, respectively. Further, the skin papilloma formation was brought down by the administration of low- and high-dose groups of OIM (by 67.51% and 75.63%). Overall, the study concludes that the Oroxylum indicum root bark extract is a potentially active antitumor and anticancer agent.


Subject(s)
Bignoniaceae , Carcinoma, Ehrlich Tumor , Mice , Animals , Plant Extracts/chemistry , Bignoniaceae/chemistry , Carcinoma, Ehrlich Tumor/drug therapy , Medicine, Traditional , Croton Oil/therapeutic use
2.
Biotechnol Prog ; 36(6): e3039, 2020 11.
Article in English | MEDLINE | ID: mdl-32558398

ABSTRACT

In the study, endophytic fungi isolated from Ophiorrhiza mungos were screened for camptothecin (CPT) biosynthetic potential by high performance liquid chromatography (HPLC). Among the 16 fungi screened, OmF3, OmF4, and OmF6 were identified to synthesize CPT. Further LC-MS analysis also showed the presence of CPT specific m/z of 349 for the extracts from OmF3, OmF4, and OmF6. However, the fragmentation masses with m/z of 320, 305, 277 and 220 specific to the CPT could be identified only for the OmF3 and OmF4. These CPT producing fungi were further identified as Meyerozyma sp. OmF3 and Talaromyces sp. OmF4. The cultures of these two fungi were then supplemented with nanoparticles and analyzed for the quantitative enhancement of CPT production by LC-MS/MS. From the result, Meyerozyma sp. OmF3 was found to produce 947.3 ± 12.66 µg/L CPT, when supplemented with 1 µg/mL zinc oxide nanoparticles and the same for uninduced parental strain OmF3 was only 1.77 ± 0.13 µg/L. At the same time, Talaromyces sp. OmF4 showed the highest production of 28.97 ± 0.37 µg/L of CPT when cultured with 10 µg/mL silver nanoparticles and the same for uninduced strain was 1.19 ± 0.24 µg/L. The observed quantitative enhancement of fungal CPT production is highly interesting as it is a rapid and cost effective method. The study is remarkable due to the identification of novel fungal sources for CPT production and its enhancement by nanoparticle supplementation.


Subject(s)
Antineoplastic Agents, Phytogenic/isolation & purification , Camptothecin/isolation & purification , Fungi/chemistry , Metal Nanoparticles/chemistry , Animals , Antineoplastic Agents, Phytogenic/biosynthesis , Antineoplastic Agents, Phytogenic/chemistry , Camptothecin/biosynthesis , Camptothecin/chemistry , Chromatography, High Pressure Liquid , Humans , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...