Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 13(3)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033201

ABSTRACT

Fe75-xMn25Gax Heusler-like compounds were investigated in a wide range of Fe/Ga ratios while keeping the Mn content constant and equal 25 at% in order to elucidate the interplay between magnetic properties and composition. Materials were prepared by arc-melting from pure elements and subsequently annealed. Experimental investigations were focused on magnetization behavior in a wide temperature range from 4 to 1000 K and magnetic field up to 9 T. Optical and magneto-optical (MO) measurements were employed to shed more light on the magnetic state and electronic structure of investigated materials. Magnetization measurements indicated that in the vicinity of stoichiometry (Fe2MnGa) the compounds are ferro/ferrimagnetic, whereas the Fe-deficient compound is paramagnetic and at high Fe concentration the antiferromagnetic interaction prevails. Theoretical calculations of corresponding ordered and disordered stoichiometric compounds were carried out and compared to the experiment on the level of net magnetic moment as well as magneto-optical spectra. This comparison suggests that the Heusler crystal structure, L21, is not present even close to stoichiometry. Moreover, the comparison of density of states (DOS) for ordered and disordered structures allowed us to explain missing martensitic transformation (MT) in investigated materials.

2.
Sci Rep ; 9(1): 16547, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31719549

ABSTRACT

Unlike ferromagnetic materials, ferrimagnetic metals have recently received considerable attention due to their bulk perpendicular magnetic anisotropy, low net magnetization and tunable magnetic properties. This makes them perfect candidates for the research of recently discovered spin-torque related phenomena. Among other ferrimagnetic metals, GdFe has an advantage in relatively large magnetic moments in both sublattices and tunability of compensation point above the room temperature by small changes in its composition. We present a systematic study of optical and magneto-optical properties of amorphous GdxFe(100-x) thin films of various compositions (x = 18.3, 20.0, 24.7, 26.7) prepared by DC sputtering on thermally oxidized SiO2 substrates. A combination of spectroscopic ellipsometry and magneto-optical spectroscopy in the photon energy range from 1.5 to 5.5 eV with advanced theoretical models allowed us to deduce the spectral dependence of complete permittivity tensors across the compensation point. Such information is important for further optical detection of spin related phenomena driven by vicinity of compensation point in nanostructures containing GdFe.

3.
Opt Express ; 25(20): 24370-24375, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29041382

ABSTRACT

The validity of the Fourier factorization (FF) rules used in the constitutive relations in the Fourier modal method is analyzed for one-dimensional diffraction gratings made as a thin film with uniform thickness and several examples of continuous lateral profiles of permittivity. The comparison of the method using the correct FF rules with other FF choices demonstrates the validity of the FF rules for any inhomogeneous, not only discontinuous profile.

4.
Sci Rep ; 6: 23640, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-27025269

ABSTRACT

Magneto-optical cerium-substituted yttrium iron garnet (Ce:YIG) thin films display Faraday and Kerr rotation (rotation of light polarisation upon transmission and reflection, respectively) as well as a nonreciprocal phase shift due to their non-zero off-diagonal permittivity tensor elements, and also possess low optical absorption in the near-infrared. These properties make Ce:YIG useful in providing nonreciprocal light propagation in integrated photonic circuits, which is essential for accomplishing energy-efficient photonic computation and data transport architectures. In this study, 80 nm-thick Ce:YIG films were grown on Gadolinium Gallium Garnet substrates with (100), (110) and (111) orientations using pulsed laser deposition. The films had bulk-like structural and magnetic quality. Faraday and Kerr spectroscopies along with spectroscopic ellipsometry were used to deduce the complete permittivity tensor of the films in the ultraviolet, visible and near-infrared spectral region, and the magneto-optical figure of merit as a function of wavelength was determined. The samples showed the highest IR Faraday rotation reported for thin films of Ce:YIG, which indicates the importance of this material in development of nonreciprocal photonic devices.

5.
Materials (Basel) ; 9(1)2016 Jan 02.
Article in English | MEDLINE | ID: mdl-28787818

ABSTRACT

Optical and magneto-optical properties of amorphous Gd22Fe78 (GdFe) thin films prepared by direct current (DC) sputtering on thermally oxidized substrates were characterized by the combination of spectroscopic ellipsometry and magneto-optical spectroscopy in the photon energy range from 1.5 to 5.5 eV. Thin SiNx and Ru coatings were used to prevent the GdFe surface oxidation and contamination. Using advanced theoretical models spectral dependence of the complete permittivity tensor and spectral dependence of the absorption coefficient were deduced from experimental data. No significant changes in the optical properties upon different coatings were observed, indicating reliability of used analysis.

6.
Opt Express ; 22(3): 2562-77, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24663549

ABSTRACT

A photonic crystal waveguide (PhC-WG) was reported to be usable as an optical sensor highly sensitive to various material parameters, which can be detected via changes in transmission through the PhC-WG caused by small changes of the refractive index of the medium filling its holes. To monitor these changes accurately, a precise optical model is required, for which the plane wave expansion (PWE) method is convenient. We here demonstrate the revision of the PWE method by employing the complex Fourier factorization approach, which enables the calculation of dispersion diagrams with fast convergence, i.e., with high precision in relatively short time. The PhC-WG is proposed as a line defect in a hexagonal array of cylindrical holes periodically arranged in bulk silicon, filled with a variable medium. The method of monitoring the refractive index changes is based on observing cutoff wavelengths in the PhC-WG dispersion diagrams. The PWE results are also compared with finite-difference time-domain calculations of transmittance carried out on a PhC-WG with finite dimensions.


Subject(s)
Computer-Aided Design , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis
7.
Materials (Basel) ; 6(9): 4096-4108, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-28788320

ABSTRACT

This work is devoted to the systematic study of the optical and magneto-optical properties of sputter deposited CuFe2O4 thin films in the photon energy region between 2 and 5 eV using spectroscopic ellipsometry and magneto-optical Kerr spectroscopy. The spectral dependence of both the diagonal and off-diagonal elements of the permittivity tensor is determined. A complete picture about the electron transitions in CuFe2O4 is suggested in the frame of intervalence charge transfer and intersublattice charge transfer transitions. The effect of deposition conditions and post-deposition treatment in CuFe2O4 films upon the optical and magneto-optical properties is discussed.

8.
Opt Express ; 18(26): 27511-24, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21197026

ABSTRACT

We demonstrate an enhancement of the plane wave expansion method treating two-dimensional photonic crystals by applying Fourier factorization with generally elliptic polarization bases. By studying three examples of periodically arranged cylindrical elements, we compare our approach to the classical Ho method in which the permittivity function is simply expanded without changing coordinates, and to the normal vector method using a normal-tangential polarization transform. The compared calculations clearly show that our approach yields the best convergence properties owing to the complete continuity of our distribution of polarization bases. The presented methodology enables us to study more general systems such as periodic elements with an arbitrary cross-section or devices such as photonic crystal waveguides.


Subject(s)
Refractometry/methods , Surface Plasmon Resonance/methods , Crystallization , Fourier Analysis , Light , Photons , Scattering, Radiation
9.
Nanotechnology ; 20(25): 255201, 2009 Jun 24.
Article in English | MEDLINE | ID: mdl-19487805

ABSTRACT

We report on ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays. We observed a significant reduction of the internal multiple light scattering phenomena, which are characteristic for ZnO micropowders. The microsized grains of the commercially available ZnO:Zn (P 15) were reduced to the nanometre scale by pulsed laser ablation at an oxygen ambient pressure of 10 kPa. Our investigations show no crystalline change and no shift of the broad green emission peak at 500 nm for the ZnO nanopowder. For the application in field emission displays, we demonstrate the possibility of achieving cathodoluminescence with a fine pitch size of 100 microm of the patterned pixels without requiring additional electron beam focusing and without a black matrix. Moreover, the presented results show the feasibility of employing ZnO nanopowder as a detection material for the phosphorus screen method, which is able to localize emission sites of carbon nanotube films and arrays with an accuracy comparable to scanning anode field emission microscopy.

10.
Opt Express ; 17(9): 7269-74, 2009 Apr 27.
Article in English | MEDLINE | ID: mdl-19399103

ABSTRACT

The coupled wave theory dealing with optics of discontinuous two-dimensional (2D) periodic structures is reformulated by using Fourier factorization with complex polarization bases, which is a generalized implementation of the fast Fourier factorization rules. The modified approach yields considerably improved convergence properties, as shown on an example of a 2D quartz grating. The method can also be applied to the calculation of 2D photonic band structures or nonperiodic cylindrical devices, and can be generalized to elements with arbitrary cross-sections.


Subject(s)
Models, Theoretical , Optical Devices , Refractometry/instrumentation , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Fourier Analysis , Reproducibility of Results , Sensitivity and Specificity
11.
Opt Express ; 13(12): 4651-6, 2005 Jun 13.
Article in English | MEDLINE | ID: mdl-19495381

ABSTRACT

Magneto-optical Kerr effect (MOKE) spectroscopy in the -1st diffraction order with p-polarized incidence is applied to study arrays of submicron Permalloy wires at polar magnetization. A theoretical approach combining two methods, the local modes method neglecting the edge effects of wires and the rigorous coupled wave analysis, is derived to evaluate the diffraction losses due to irregularities of the wire edges. A new parameter describing the quality of the edges is defined according to their contribution in the diffracted MOKE. The quality factor, evaluated for two different samples, is successfully compared with irregularities visible on atomic force microscopy pictures.

SELECTION OF CITATIONS
SEARCH DETAIL
...