Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37241608

ABSTRACT

For the first time in the world, the behavioral functions of laboratory mammals exposed to silver nanoparticles were studied with regard to age. Silver nanoparticles coated with polyvinylpyrrolidone with a size of 8.7 nm were used in the present research as a potential xenobiotic. Elder mice adapted to the xenobiotic better than the younger animals. Younger animals demonstrated more drastic anxiety than the elder ones. A hormetic effect of the xenobiotic in elder animals was observed. Thus, it is concluded that adaptive homeostasis non-linearly changes with age increase. Presumably, it may improve during the prime of life and start to decline just after a certain stage. This work demonstrates that age growth is not directly conjugated with the organism fading and pathology development. Oppositely, vitality and resistance to xenobiotics may even improve with age at least until the prime of life.

2.
Nanomaterials (Basel) ; 11(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34947553

ABSTRACT

Since ancient times, silver has been known for its pronounced bactericidal, antiviral and fungicidal properties. Currently, nanoparticles of this metal are widely used in the food, light and pharmaceutical industries, as well as in medicine. Silver in any form can have a toxic effect not only on pathogens, but also on healthy cells. The biological activity and bioavailability of silver preparations depend on the degree of their solubility in water. In addition, the maximum permissible concentration of soluble forms of silver is an order of magnitude lower than that of insoluble forms. This makes nanoparticles of silver with a hydrophilic coating that form stable colloidal solutions in aqueous media potentially unsafe objects. In this work, we studied the kinetics of the accumulation of silver nanoparticles with an average size of 34 ± 5 nm stabilized with polyvinylpyrrolidone in the organs of laboratory C57Bl/6 mice. The administration of nanoparticles was carried out orally for 30, 60, 120 and 180 days at the dose of 50 µg/day/animal. All the mice developed and gained weight normally during the experiment. No adverse effects were observed. Determination of the silver content in biological tissues of mammals was accomplished by neutron activation analysis. The masses and concentrations of silver in the brain and its different sections (hippocampus, cerebellum, cortex and remnants), as well as in the lungs, testes, liver, blood, kidneys, spleen and heart, were determined. The injection times at which the accumulation curves reached saturation were established. An extremely high accumulation of silver in the testes was shown at 120 days of administration, and a significant accumulation of silver in the lungs and brain was observed. The accumulation of silver in all parts of the brain except the cortex was significant, and its trend was similar to that in the whole brain.

3.
Toxics ; 9(2)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546349

ABSTRACT

The influence of daily prolonged administration of silver nanoparticles on the cognitive functions of a model mammal was studied. The accumulation of silver in the whole brain and the hippocampus, cerebellum, cortex and residual brain tissue of the mouse was investigated by highly precise and representative neutron activation analysis, and histological studies were conducted. Here, we show that long-term memory impairments were caused by the accumulation of silver nanoparticles in the brain and its subregions, such as the hippocampus, cerebellum and cortex, in a step-like manner by disturbance of hippocampal cell integrity. Three different approaches allowed us to observe this phenomenon and discover the reasons it occurred.

SELECTION OF CITATIONS
SEARCH DETAIL
...