Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 15(5): e1007748, 2019 05.
Article in English | MEDLINE | ID: mdl-31145756

ABSTRACT

Epstein Barr virus (EBV) is one of the most ubiquitous human pathogens in the world, persistently infecting more than 90% of the adult human population. It drives some of the strongest human CD8+ T cell responses, which can be observed during symptomatic primary infection known as infectious mononucleosis (IM). Despite high viral loads and prolonged CD8+ T cell stimulation during IM, EBV enters latency and is under lifelong immune control in most individuals that experience this disease. We investigated whether changes in T cell function, as frequently characterized by PD-1 up-regulation, occur during IM due to the prolonged exposure to high antigen levels. We readily detected the expansion of PD-1 positive CD8+ T cells together with high frequencies of Tim-3, 2B4, and KLRG1 expression during IM and in mice with reconstituted human immune system components (huNSG mice) that had been infected with a high dose of EBV. These PD-1 positive CD8+ T cells, however, retained proliferation, cytokine production, and cytotoxic abilities. Multiple subsets of CD8+ T cells expanded during EBV infection, including PD-1+Tim-3+KLRG1+ cells that express CXCR5 and TCF-1 germinal center homing and memory markers, and may also contain BATF3. Moreover, blocking the PD-1 axis compromised EBV specific immune control and resulted in virus-associated lymphomagenesis. Finally, PD-1+, Tim-3+, and KLRG1+ CD8+ T cell expansion coincided with declining viral loads during low dose EBV infection. These findings suggest that EBV infection primes PD-1 positive CD8+ T cell populations that rely on this receptor axis for the efficient immune control of this ubiquitous human tumor virus.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Cytotoxic/immunology , Viral Load/immunology , Adult , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Case-Control Studies , Cytokines/metabolism , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Gene Expression Profiling , Humans , Inflammation Mediators/metabolism , Mice , Mice, Inbred NOD , Mice, SCID
2.
PLoS Pathog ; 10(8): e1004333, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25165855

ABSTRACT

Epstein Barr virus (EBV) infection expands CD8+ T cells specific for lytic antigens to high frequencies during symptomatic primary infection, and maintains these at significant numbers during persistence. Despite this, the protective function of these lytic EBV antigen-specific cytotoxic CD8+ T cells remains unclear. Here we demonstrate that lytic EBV replication does not significantly contribute to virus-induced B cell proliferation in vitro and in vivo in a mouse model with reconstituted human immune system components (huNSG mice). However, we report a trend to reduction of EBV-induced lymphoproliferation outside of lymphoid organs upon diminished lytic replication. Moreover, we could demonstrate that CD8+ T cells against the lytic EBV antigen BMLF1 can eliminate lytically replicating EBV-transformed B cells from lymphoblastoid cell lines (LCLs) and in vivo, thereby transiently controlling high viremia after adoptive transfer into EBV infected huNSG mice. These findings suggest a protective function for lytic EBV antigen-specific CD8+ T cells against EBV infection and against virus-associated tumors in extra-lymphoid organs. These specificities should be explored for EBV-specific vaccine development.


Subject(s)
B-Lymphocytes/virology , Cell Transformation, Viral/physiology , Epstein-Barr Virus Infections/immunology , T-Lymphocytes, Cytotoxic/immunology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/immunology , Flow Cytometry , Humans , Immunohistochemistry , Mice , Mice, Transgenic , Real-Time Polymerase Chain Reaction
3.
J Immunol ; 192(2): 824-32, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24337377

ABSTRACT

The potential contribution of plasmacytoid dendritic cells (pDCs) in the presentation of tumor cell Ags remains unclear, and some controversies exist with regard to the ability of pDCs to phagocytose cell-derived particulate Ags and cross-present them to MHC class I-restricted T lymphocytes. In this study, we show that human pDCs, although inefficient in the internalization of cell membrane fragments by phagocytosis, can efficiently acquire membrane patches and associated molecules from cancer cells of different histotypes. The transfer of membrane patches to pDCs occurred in a very short time and required cell-to-cell contact. Membrane transfer also included intact HLA complexes, and the acquired Ags could be efficiently recognized on pDCs by tumor-specific CD8(+) T cells. Remarkably, pDCs isolated from human colon cancer tissues displayed a strong surface expression of epithelial cell adhesion molecule, indicating that the exchange of exogenous Ags between pDCs and tumor cells also can occur in vivo. These data demonstrate that pDCs are well suited to acquire membrane patches from contiguous tumor cells by a cell-to-cell contact-dependent mechanism that closely resembles "trogocytosis." This phenomenon may allow pDCs to proficiently present tumor cell-derived Ags, despite limited properties of endophagocytosis.


Subject(s)
Antigen Presentation/immunology , Antigens, Neoplasm/immunology , Cell Membrane/immunology , Dendritic Cells/immunology , Phagocytosis/immunology , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Caco-2 Cells , Cell Adhesion Molecules/immunology , Cell Adhesion Molecules/metabolism , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Dendritic Cells/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Humans , Interleukin-3/immunology , Interleukin-3/metabolism , K562 Cells , MCF-7 Cells , Major Histocompatibility Complex/immunology , U937 Cells
4.
Cell Rep ; 5(6): 1489-98, 2013 Dec 26.
Article in English | MEDLINE | ID: mdl-24360958

ABSTRACT

Primary infection with the human oncogenic Epstein-Barr virus (EBV) can result in infectious mononucleosis (IM), a self-limiting disease caused by massive lymphocyte expansion that predisposes for the development of distinct EBV-associated lymphomas. Why some individuals experience this symptomatic primary EBV infection, whereas the majority acquires the virus asymptomatically, remains unclear. Using a mouse model with reconstituted human immune system components, we show that depletion of human natural killer (NK) cells enhances IM symptoms and promotes EBV-associated tumorigenesis mainly because of a loss of immune control over lytic EBV infection. These data suggest that failure of innate immune control by human NK cells augments symptomatic lytic EBV infection, which drives lymphocyte expansion and predisposes for EBV-associated malignancies.


Subject(s)
Infectious Mononucleosis/immunology , Killer Cells, Natural/immunology , Animals , Carcinogenesis , Humans , Immunity, Innate , Immunologic Memory , Infectious Mononucleosis/pathology , Infectious Mononucleosis/prevention & control , Mice , Mice, Inbred NOD , Mice, SCID , Trans-Activators/immunology
5.
Eur J Immunol ; 43(9): 2246-54, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23913412

ABSTRACT

Despite many theoretical incompatibilities between mouse and human cells, mice with reconstituted human immune system components contain nearly all human leukocyte populations. Accordingly, several human-tropic pathogens have been investigated in these in vivo models of the human immune system, including viruses such as human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV), as well as bacteria such as Mycobacterium tuberculosis and Salmonella enterica Typhi. While these studies initially aimed to establish similarities in the pathogenesis of infections between these models and the pathobiology in patients, recent investigations have provided new and interesting functional insights into the protective value of certain immune compartments and altered pathology upon mutant pathogen infections. As more tools and methodologies are developed to make these models more versatile to study human immune responses in vivo, such improvements build toward small animal models with human immune components, which could predict immune responses to therapies and vaccination in human patients.


Subject(s)
Epstein-Barr Virus Infections/immunology , HIV Infections/immunology , Leukocytes/immunology , Tuberculosis/immunology , Typhoid Fever/immunology , Animals , Disease Models, Animal , HIV-1/immunology , Herpesvirus 4, Human/immunology , Humans , Mice , Mycobacterium tuberculosis/immunology , Salmonella typhi/immunology
6.
Blood ; 118(1): 205-15, 2011 Jul 07.
Article in English | MEDLINE | ID: mdl-21596851

ABSTRACT

Chemokines and adhesion molecules up-regulated in lymphatic endothelial cells (LECs) during tissue inflammation are thought to enhance dendritic cell (DC) migration to draining lymph nodes, but the in vivo control of this process is not well understood. We performed a transcriptional profiling analysis of LECs isolated from murine skin and found that inflammation induced by a contact hypersensitivity (CHS) response up-regulated the adhesion molecules ICAM-1 and VCAM-1 and inflammatory chemokines. Importantly, the lymphatic markers Prox-1, VEGFR3, and LYVE-1 were significantly down-regulated during CHS. By contrast, skin inflammation induced by complete Freund adjuvant induced a different pattern of chemokine and lymphatic marker gene expression and almost no ICAM-1 up-regulation in LECs. Fluorescein isothiocyanate painting experiments revealed that DC migration to draining lymph nodes was more strongly increased in complete Freund adjuvant-induced than in CHS-induced inflammation. Surprisingly, DC migration did not correlate with the induction of CCL21 and ICAM-1 protein in LECs. Although the requirement for CCR7 signaling became further pronounced during inflammation, CCR7-independent signals had an additional, albeit moderate, impact on enhancing DC migration. Collectively, these findings indicate that DC migration in response to inflammation is stimulus-specific, mainly CCR7-dependent, and overall only moderately enhanced by LEC-induced genes other than CCL21.


Subject(s)
Cell Movement/immunology , Dendritic Cells/immunology , Dermatitis, Contact/immunology , Endothelial Cells/immunology , Lymph Nodes/immunology , Animals , Chemokine CCL21/genetics , Chemokine CCL21/immunology , Chemokine CCL21/metabolism , Dendritic Cells/cytology , Ear, External/immunology , Female , Gene Expression/immunology , Gene Expression Profiling , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/immunology , Intercellular Adhesion Molecule-1/metabolism , Lymph Nodes/cytology , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Oligonucleotide Array Sequence Analysis , Receptors, CCR7/genetics , Receptors, CCR7/immunology , Receptors, CCR7/metabolism , Up-Regulation/immunology , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/immunology , Vascular Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...