Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21262463

ABSTRACT

BackgroundWhile mass COVID-19 vaccination programs are underway in high-income countries, limited availability of doses has resulted in few vaccines administered in low and middle income countries (LMICs). The COVID-19 Vaccines Global Access (COVAX) is a WHO-led initiative to promote vaccine access equity to LMICs and is providing many of the doses available in these settings. However, initial doses are limited and countries, such as Madagascar, need to develop prioritization schemes to maximize the benefits of vaccination with very limited supplies. There is some consensus that dose deployment should initially target health care workers, and those who are more vulnerable including older individuals. However, questions of geographic deployment remain, in particular associated with limits around vaccine access and delivery capacity in underserved communities, for example in rural areas that may also include substantial proportions of the population. MethodsTo address these questions, we developed a mathematical model of SARS-CoV-2 transmission dynamics and simulated various vaccination allocation strategies for Madagascar. Simulated strategies were based on a number of possible geographical prioritization schemes, testing sensitivity to initial susceptibility in the population, and evaluating the potential of tests for previous infection. ResultsUsing cumulative deaths due to COVID-19 as the main outcome of interest, our results indicate that distributing the number of vaccine doses according to the number of elderly living in the region or according to the population size results in a greater reduction of mortality compared to distributing doses based on the reported number of cases and deaths. The benefits of vaccination strategies are diminished if the burden (and thus accumulated immunity) has been greatest in the most populous regions, but the overall strategy ranking remains comparable. If rapid tests for prior immunity may be swiftly and effectively delivered, there is potential for considerable gain in mortality averted, but considering delivery limitations modulates this. ConclusionAt a subnational scale, our results support the strategy adopted by the COVAX initiative at a global scale.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20161208

ABSTRACT

A surprising feature of the SARS-CoV-2 pandemic to date is the low burdens reported in sub-Saharan Africa (SSA) countries relative to other global regions. Potential explanations (e.g., warmer environments1, younger populations2-4) have yet to be framed within a comprehensive analysis accounting for factors that may offset the effects of climate and demography. Here, we synthesize factors hypothesized to shape the pace of this pandemic and its burden as it moves across SSA, encompassing demographic, comorbidity, climatic, healthcare and intervention capacity, and human mobility dimensions of risk. We find large scale diversity in probable drivers, such that outcomes are likely to be highly variable among SSA countries. While simulation shows that extensive climatic variation among SSA population centers has little effect on early outbreak trajectories, heterogeneity in connectivity is likely to play a large role in shaping the pace of viral spread. The prolonged, asynchronous outbreaks expected in weakly connected settings may result in extended stress to health systems. In addition, the observed variability in comorbidities and access to care will likely modulate the severity of infection: We show that even small shifts in the infection fatality ratio towards younger ages, which are likely in high risk settings, can eliminate the protective effect of younger populations. We highlight countries with elevated risk of slow pace, high burden outbreaks. Empirical data on the spatial extent of outbreaks within SSA countries, their patterns in severity over age, and the relationship between epidemic pace and health system disruptions are urgently needed to guide efforts to mitigate the high burden scenarios explored here.

SELECTION OF CITATIONS
SEARCH DETAIL
...