Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 127(45): 9419-9429, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37935045

ABSTRACT

The energetic demands of modern society for clean energy vectors, such as H2, have caused a surge in research associated with homogeneous and immobilized electrocatalysts that may replace Pt. In particular, clathrochelates have shown excellent electrocatalytic properties for the hydrogen evolution reaction (HER). However, the actual mechanism for the HER catalyzed by these d-metal complexes remains an open debate, which may be addressed via Operando spectroelectrochemistry. The prediction of electrochemical properties via density functional theory (DFT) needs access to thermodynamic functions, which are only available after Hessian calculations. Unfortunately, there is a notable lack in the current literature regarding the precise evaluation of vibrational spectra of such complexes, given their structural complexity and the associated tangled IR spectra. In this work, we have performed a detailed theoretical and experimental analysis in a family of Co(II) clathrochelates, in order to establish univocally their IR pattern, and also the calculation methodology that is adequate for such predictions. In summary, we have observed the presence of multiple common bands shared by this clathrochelate family, using the B3LYP functional, the LANL2DZ basis, and effective core potentials (ECP) for heavy atoms. The most important issue addressed in this article was therefore related to the detailed assignment of the fingerprint associated with cobalt(II) clathrochelates, which is a challenging endeavor due to the crowded nature of their spectra.

2.
Phys Chem Chem Phys ; 25(28): 18679-18690, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37403572

ABSTRACT

Combined experimental 57Fe Mössbauer and theoretical DFT study of a series of iron(II)-centered (pseudo)macrobicyclic analogs and homologs was performed. The field strength of the corresponding (pseudo)encapsulating ligand was found to affect both the spin state of a caged iron(II) ion and the electron density at its nucleus. In a row of the iron(II) tris-dioximates, passing from the non-macrocyclic complex to its monocapped pseudomacrobicyclic analog caused an increase both in the ligand field strength and in the electron density at the Fe2+ ion, and, therefore, a decrease in the isomer shift (IS) value (so-called "semiclathrochelate effect"). Its macrobicyclization, giving the quasiaromatic cage complex, caused a further increase in the two former parameters and a decrease in IS (so-called "macrobicyclic effect"). The trend of their IS values was successfully predicted using the performed quantum-chemical calculations and the corresponding linear correlation with the electron density at their 57Fe nuclei was plotted. A variety of different functionals can be successfully used for such excellent prediction. The slope of this correlation was found to be unaffected by the used functional. In contrast, the predictions of both the sign and the values of quadrupole splitting (QS) for them, based on the theoretical calculations of EFG tensors, were found to be a real great challenge, which could not be solved at the moment even in the case of these C3-pseudosymmetric iron(II) complexes with known XRD structures. The latter experimental data allowed us to deduce a sign of the QSs for them. The straightforwarded molecular design of a (pseudo)encapsulating ligand is proposed to control both the spin state and the redox characteristics of an encapsulated metal ion.

3.
Chemistry ; 29(31): e202300188, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-36971396

ABSTRACT

The pollution caused by heavy metals (HMs) may occur through both natural processes and anthropogenic activities and is found in complex media. The purpose of this review is to summarize the state-of-art of fluorescent CDs and the sensing applications in a systematic manner. This review intends to provide clues on the origin on the observed selectivity in chemiluminiscence sensors, which was until now a stated but unaddressed question, and still remains open for debate. Indeed, it is tempting to think that CDs possessing functional groups with soft bases at the surface are able to detect soft metal acids, while the opposite is to be suspected for hard acid-base pairs. However, the literature shows several examples where this trend does not hold. We found that such observation is explained by the involvement of dynamic quenching, which does not involve the formation of a non-fluorescent complex, as in the case of static quenching. We have provided an interpretation of published data that was not provided by the original authors and offer guidelines to enable the design of CDs to target ions in solution.

4.
Chem Commun (Camb) ; 56(58): 8147-8150, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32555911

ABSTRACT

Green low-sensitivity energetic materials which can be stored under laboratory conditions and do not ignite spontaneously at room temperature are currently of high relevance due to their multiple energy applications in propulsion, pyrotechnics or civil engineering. In this context, we report a gram-scale synthesis of copper oxide (Cu2O) nanoparticles interfaced at the surface of 2D aluminum (Al) nanosheets. This synthesis is mild, cheap, and environmentally friendly, allowing us to obtain a stable and homogeneous product with high crystallinity. The burst heat released was estimated to be 6841 ± 272 J g-1 under air, and 2946 ± 306 J g-1 under a nitrogen (N2) atmosphere, which are the largest values reported so far. We attribute this superior performance to the intimate interfacing between Al and Cu2O nanoparticles. The complex reactivity of this material was thoroughly studied, permitting to account for the branching of reactions occurring in the material under different conditions, which is essential for the understanding of the factors governing the reactivity.

5.
Top Curr Chem (Cham) ; 378(1): 12, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31907672

ABSTRACT

Nanomaterials have revolutionized the sensing and biosensing fields, with the development of more sensitive and selective devices for multiple applications. Gold, silver and iron oxide nanoparticles have played a particularly major role in this development. In this review, we provide a general overview of the synthesis and characteristics of gold, silver and iron oxide nanoparticles, along with the main strategies for their surface functionalization with ligands and biomolecules. Finally, different architectures suitable for electrochemical applications are reviewed, as well as their main fabrication procedures. We conclude with some considerations from the authors' perspective regarding the promising use of these materials and the challenges to be faced in the near future.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Ferric Compounds/chemical synthesis , Gold/chemistry , Nanoparticles/chemistry , Silver/chemistry , Ferric Compounds/chemistry , Ligands , Surface Properties
6.
RSC Adv ; 9(24): 13503-13514, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-35519556

ABSTRACT

In this work, efficient methanol oxidation fuel cell catalysts with excellent stability in alkaline media have been synthesized by including transition metals to the layered double hydroxide (LDH) nanohybrids. The nanohybrids CoCr-LDH, NiCoCr-LDH and NiCr-LDH were prepared by co-precipitation and their physicochemical characteristics were investigated using TEM, XRD, IR and BET analyses. The nanohybrid CoCr-LDH is found to have the highest surface area of 179.87 m2 g-1. The electrocatalytic activity measurements showed that the current density was increased by increasing the methanol concentration (from 0.1 to 3 M) as a result of its increased oxidation at the surface. The nanohybrid NiCr-LDH, showing the highest pore size (55.5 Å) showed the highest performance for methanol oxidation, with a current density of 7.02 mA cm-2 at 60 mV s-1 using 3 M methanol. In addition, the corresponding onset potential was 0.35 V (at 60 mV s-1 using 3 M methanol) which is the lowest value among all other used LDH nanohybrids. Overall, we observed the following reactivity order: NiCr-LDH > NiCoCr-LDH > CoCr-LDH, as derived from the impedance spectroscopy analysis.

7.
Chemphyschem ; 19(19): 2549-2558, 2018 10 05.
Article in English | MEDLINE | ID: mdl-29924920

ABSTRACT

The hydrogen evolution reaction (HER) has attracted much attention within the scientific community because of increasing demands of modern society for clean and renewable energy sources. Molecular complexes of 3d-transition metals, such as cobalt, hold potential to replace platinum for the HER in acidic media. Among these, cage complexes such as tris-glyoximate metal clathrochelates, have demonstrated promising catalytic properties towards the HER. However, it is not clear whether the catalytic activity of this molecule stems from metal-centered activation of H+ , due to a low oxidation state of the metal stabilized by the surrounding organic cage, or if it is the organic cage playing a further cooperative role in bringing protons together. Herein, we report on a density functional theory study of two possible mechanisms for the HER catalyzed by a model Co clathrochelate. To assess the putative ligand involvement in the mechanism, several combinations of single and double protonation sites were investigated. The structural and energetic analysis of relevant intermediates suggests that the electrocatalytic mechanism is not based on the cooperation between the ligand and the metal. Instead, it is mainly due to the activation of H+ by the Co metallocenter. Our calculations further suggest that the last step in the mechanism is a proton coupled electron transfer step.

8.
J Inorg Biochem ; 170: 134-147, 2017 05.
Article in English | MEDLINE | ID: mdl-28237732

ABSTRACT

Oxidative stress resulting from iron and reactive oxygen species (ROS) homeostasis breakdown has been implicated in several diseases. Therefore, molecules capable of binding iron and/or scavenging ROS may be reasonable strategies for protecting cells. Rapanone is a naturally occurring hydroxyl-benzoquinone with a privileged chelating structure. In this work, we addressed the antioxidant properties of rapanone concerning its iron-chelating and scavenging activities, and its protective potential against iron and tert-butyl hydroperoxide-induced damage to mitochondria. Experimental determinations revealed the formation of rapanone-Fe(II)/Fe(III) complexes. Additionally, the electrochemical assays indicated that rapanone oxidized Fe(II) and O2-, thus inhibiting Fenton-Haber-Weiss reactions. Furthermore, rapanone displayed an increased 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability in the presence of Fe(II). The above results explained the capacity of rapanone to provide near-full protection against iron and tert-butyl hydroperoxide induced mitochondrial lipid peroxidation in energized organelles, which fail under non-energized condition. We postulate that rapanone affords protection against iron and reactive oxygen species by means of both iron chelating and iron-stimulated free radical scavenging activity.


Subject(s)
Benzoquinones/chemistry , Coordination Complexes/chemistry , Free Radical Scavengers/chemistry , Iron/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...