Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 394: 130234, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142906

ABSTRACT

A new alternative for hydrodynamic cavitation-assisted pretreatment of sugarcane bagasse was proposed, along with a simultaneous saccharification and co-fermentation (SSCF) process performed in interconnected columns. Influential variables in the pretreatment were evaluated using a statistical design, indicating that an ozone flow rate of 10 mg min-1 and a pH of 5.10 resulted in 86 % and 72 % glucan and xylan hydrolysis yields, respectively, in the subsequent enzymatic hydrolysis process. Under these optimized conditions, iron sulfate (15 mg L-1) was added to assess Fenton pretreatment, resulting in glucan and xylan hydrolysis yields of 92 % and 71 %, respectively, in a material pretreated for 10 min. In SSCF, ethanol volumetric productivities of 0.33 g L-1 h-1 and of 0.54 g L-1 h-1 were obtained in batch and fed-batch operation modes, achieving 26 g L-1 of ethanol in 48 h in the latter mode.


Subject(s)
Cellulose , Saccharomycetales , Saccharum , Cellulose/metabolism , Fermentation , Saccharum/metabolism , Ethanol , Hydrodynamics , Cells, Immobilized/metabolism , Xylans , Hydrolysis
2.
Bioresour Technol ; 345: 126458, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34863850

ABSTRACT

Environmental problems due to utilization of fossil-derived materials for energy and chemical generation has prompted the use of renewable alternative sources, such as lignocellulose biomass (LB). Indeed, the production of biomolecules and biofuels from LB is among the most important current research topics aiming to development a sustainable bioeconomy. Yet, the industrial use of LB is limited by the recalcitrance of biomass, which impairs the hydrolysis of the carbohydrate fractions. Hydrodynamic cavitation (HC) and Advanced Oxidative Processes (AOPs) has been proposed as innovative pretreatment strategies aiming to reduce process time and chemical inputs. Therefore, the underlying mechanisms, procedural strategies, influence on biomass structure, and research gaps were critically discussed in this review. The performed discussion can contribute to future developments, giving a wide overview of the main involved aspects.


Subject(s)
Hydrodynamics , Lignin , Biofuels , Biomass , Lignin/metabolism , Oxidative Stress
3.
Prep Biochem Biotechnol ; 49(4): 328-333, 2019.
Article in English | MEDLINE | ID: mdl-30712449

ABSTRACT

L-asparaginase is an important enzyme used in the pharmaceutical and food industry, which can be produced by different microorganisms using low cost feedstocks. In this work, sugarcane bagasse (SCB) was used as support for enzyme production in solid-state fermentation (SSF) by A. terreus. Initially, the influence of the variables carbon and nitrogen sources on the enzyme production was studied following an experimental design carried out in Erlenmeyer flasks. Statistical analysis indicated the use of 0.54% of starch, 0% of maltose, 0.44% of asparagine, and 1.14% of glutamine in the medium, resulting in enzyme activity per volume of produced extract of 120.723 U/L. Then, these conditions were applied in a horizontal column reactor filled with SCB, producing 105.3 U/L of enzyme activity. Therefore, the potential of extracellular L-asparaginase enzyme production in the column reactor using sugarcane bagasse as support was demonstrated and it represents a system that can favor large scale production.


Subject(s)
Asparaginase/biosynthesis , Aspergillus/enzymology , Bioreactors , Cellulose/chemistry , Fermentation , Saccharum/chemistry , Asparaginase/isolation & purification
4.
Curr Microbiol ; 72(2): 133-138, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26507335

ABSTRACT

The use of sugarcane bagasse hemicellulosic hydrolysates presents an interesting alternative to second generation (2G) ethanol production. Techniques to enhance the fermentation process, e.g., the use of immobilized cells, is one of the key factors for efficient production. Here, the effect of two important parameters (cell concentration in immobilized system and stirring rate) on the 2G ethanol production using the wild Brazilian yeast S. shehatae UFMG-HM 52.2 immobilized in calcium alginate matrix are presented. A 2(2) full factorial design of experiments was carried out to evaluate the effect of cell concentrations in sodium alginate solution for immobilized bead production (3.0, 6.0, and 9.0 g/L) and stirring rate (150, 200, and 250 rpm) for 2G ethanol production. Statistical analysis showed that the use of both variables at low levels enhanced ethanol yield (YP/S). Under these process conditions, YP/S of 0.31 g/g and ethanol productivity (Qp) of 0.12 g/L h were achieved. Results showed the potential of this immobilized yeast in 2G ethanol production from C5 sugars and demonstrate the importance of adequate cell concentration in immobilized systems, a finding that stands to increase bioprocesses yields and productivity.


Subject(s)
Bioreactors/microbiology , Cells, Immobilized/metabolism , Ethanol/metabolism , Glycoside Hydrolases/metabolism , Saccharomycetales/metabolism , Biotechnology/methods , Brazil
SELECTION OF CITATIONS
SEARCH DETAIL
...