Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Pharm ; 81(2): 359-91, 2013.
Article in English | MEDLINE | ID: mdl-23833709

ABSTRACT

The combinatorial library of novel potential anticancer agents, namely, 2-(alkyl-, alkaryl-, aryl-, hetaryl-)[1,2,4]triazolo[1,5-c]quinazolines, was synthesized by the heterocyclization of the alkyl-, alkaryl-, aryl-, hetarylcarboxylic acid (3H-quinazoline-4-ylidene)hydrazides by oxidative heterocyclization of the 4-(arylidenehydrazino)quinazolines using bromine, and by the heterocyclization of N-(2-cyanophenyl)formimidic acid ethyl ester. The optimal method for synthesis of the s-triazolo[1,5-c]quinazolines appeared to be cyclocondensation of the corresponding carboxylic acid (3H-quinazoline-4-ylidene)hydrazides. The compounds' structures were established by (1)H, (13)C NMR, LC- and EI-MS analysis. The in vitro screening of anticancer activity determined the most active compound to be 3,4,5-trimethoxy-N'-[quinazolin-4(3H)-ylidene]benzohydrazide (3.20) in micromolar concentrations with the GI50 level (MG_MID, GI50 is 2.29). Thus, the cancer cell lines whose growth is greatly inhibited by compound 3.20 are: non-small cell lung cancer (NCI-H522, GI50=0.34), CNS (SF-295, GI50=0.95), ovarian (OVCAR-3, GI50=0.33), prostate (PC-3, GI50=0.56), and breast cancer (MCF7, GI50=0.52), leukemia (K-562, GI50=0.41; SR, GI50=0.29), and melanoma (MDA-MB-435, GI50=0.31; SK-MEL-5, GI50=0.74; UACC-62, GI50=0.32). SAR-analysis is also discussed.

2.
Sci Pharm ; 81(1): 15-42, 2013.
Article in English | MEDLINE | ID: mdl-23641327

ABSTRACT

The novel heterocyclization of 5-(2-aminophenyl)-1H-tetrazole with potassium ethylxanthogenate or carbon disulfide was proposed. The potassium salt of the tetrazolo[1,5-c]quinazoline-5-thione was subsequently modified by alkylation with proper halogen derivatives to (tetrazolo[1,5-c]quinazolin-5-ylthio)alkyls, N,N-dialkylethylamines, 1-aryl-2-ethanones, 1-(alkyl)aryl-2-ethanols, carboxylic acids, and esters. The structures of all newly synthesized compounds were confirmed by FT-IR, UV-vis, LC-MS, (1)H, (13)C NMR, and elemental analysis data. The substances were screened for antibacterial and antifungal activities (100 µg) against Escherichia coli, Staphylococcus aureus, Enterobacter aerogenes, Entrococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans. Preliminary bioluminescence inhibition tests against Photobacterium leiognathi Sh1 showed that substances 5.2-5.4, 6.1, 7.1 with ethanone or carboxylic acid substituents showed toxicity against bacteria cells. The substances chosen by the US National Cancer Institute (NCI) were screened for their ability to inhibit 60 different human tumor cell lines, where 2-(tetrazolo[1,5-c]quinazolin-5-ylthio)-1-(4-tolyl)ethanone (5.2), 3-(tetrazolo[1,5-c]quinazolin-5-ylthio)propanoic and related 3-metyl-butanoic acids (6.2, 6.3), and ethyl tetrazolo[1,5-c]quinazolin-5-ylthio)acetate (7.2) showed lethal antitumor activity (1.0 µM) against the acute lymphoblastic leukemia cell line (CCRF-CEM), and substances 5.2 and 6.3 exhibited moderate anticancer properties inhibiting growth of the leukemia MOLT-4 and HL06-(TB) cell lines. The moderate antitumor activity was demonstrated in 1-(2,5-dimethoxyphenyl)-2-(tetrazolo[1,5-c]quinazolin-5-ylthio)ethanone (5.4) against the CNS cancer cell line SNB-75. Comparing the docking mode of the Gefitinib and synthesised substances on the ATP binding site of EGFR, it could be assumed that these compounds might act in the same way. The results of the investigation could be considered as a useful base for future development of potent antimicrobials and antitumor agents among tetrazolo[1,5-c]quinazoline-5-thione S-derivatives.

3.
Sci Pharm ; 80(1): 37-65, 2012.
Article in English | MEDLINE | ID: mdl-22396903

ABSTRACT

Several novel 6-thio-3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazoline-based compounds containing an ω-(dialkylamino(heterocyclyl)]alkyl fragment were synthesized to examine their anticancer activity. Some of the 6-{[ω-(hetero-cyclyl)alkyl]thio}-3-R-2H-[1,2,4]triazino[2,3-c]quinazoline-2-ones (3.1-3.10) were obtained by the nucleophilic substitution of 6-[ω-halogenalkyl]thio-3-R-2H-[1,2,4]triazino[2,3-c]quinazoline-2-ones (2.1-2.8) with azaheterocycles. Alternatively, compounds 3.1-3.22 were synthesized by alkylation of 3-R-6-thio-2H-[1,2,4]triazino[2,3-c]quinazoline-2-ones potassium salts (1.1-1.4) with (2-chloroethyl)-N,N-dialkylamine hydrochlorides or 1-(2-chloroethyl)heterocycle hydrochlorides. The structures of compounds were elucidated by (1)H, (13)C NMR, LC-MS and EI-MS analysis. Then anticancer and antibacterial, bioluminescence inhibition of Photobacterium leiognathi Sh1 activities of the substances were tested in vitro. It was found that compound 3.18 possessed a wide range of anticancer activity against 27 cell lines of cancer: non-small cell lung, colon, CNS, ovarian, renal, prostate, breast, melanoma and leukemia (log GI(50) < -5.65). The "structure-activity" relationship was discussed. COMPARE analysis for synthesized anticancer active compounds was performed.

4.
Eur J Med Chem ; 46(12): 6066-74, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22051065

ABSTRACT

In this paper the novel N-cycloalkyl-(cycloalkylaryl)-2-[(3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazoline-6-yl)thio]acetamides synthesis by aminolysis of activated by thionyl chloride or carbonyldiimidazole [(3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazolin-6-yl)-thio]acetic acids and alkylation of the 3-R-6-thio-6,7-dihydro-2H-[1,2,4]triazino[2,3-c]quinazoline-2-ones potassium salts with N-cycloalkyl-(cycloalkylaryl)-2-chloroacetamides are proposed. The structures of compounds are determined by (1)H, (13)C NMR, LC-MS and EI-MS analysis. The in vitro anticancer, antibacterial activity and Photobacterium leiognathi Sh1 bioluminescence inhibition of synthesized compounds were revealed. SAR results were discussed. Compound 4.10 was found to be the most anticancer active one, selectively influenced on the non-small cell lung and CNS cancer cell lines, especially on the HOP-92 (log GI(50) = -6.01) and U251 (log GI(50) = -6.00).


Subject(s)
Acetamides/chemistry , Acetamides/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Acetamides/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Bacteria/drug effects , Bacterial Infections/drug therapy , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Microbial Sensitivity Tests , Neoplasms/drug therapy , Quinazolines/chemical synthesis , Quinazolines/chemistry , Quinazolines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...