Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nat Chem ; 9(7): 644-652, 2017 07.
Article in English | MEDLINE | ID: mdl-28644481

ABSTRACT

Alkali metal intercalation into polyaromatic hydrocarbons (PAHs) has been studied intensely after reports of superconductivity in a number of potassium- and rubidium-intercalated materials. There are, however, no reported crystal structures to inform our understanding of the chemistry and physics because of the complex reactivity of PAHs with strong reducing agents at high temperature. Here we present the synthesis of crystalline K2Pentacene and K2Picene by a solid-solid insertion protocol that uses potassium hydride as a redox-controlled reducing agent to access the PAH dianions, and so enables the determination of their crystal structures. In both cases, the inserted cations expand the parent herringbone packings by reorienting the molecular anions to create multiple potassium sites within initially dense molecular layers, and thus interact with the PAH anion π systems. The synthetic and crystal chemistry of alkali metal intercalation into PAHs differs from that into fullerenes and graphite, in which the cation sites are pre-defined by the host structure.

2.
Nat Chem ; 6(4): 343-51, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24651203

ABSTRACT

Porous materials are attractive for separation and catalysis-these applications rely on selective interactions between host materials and guests. In metal-organic frameworks (MOFs), these interactions can be controlled through a flexible structural response to the presence of guests. Here we report a MOF that consists of glycyl-serine dipeptides coordinated to metal centres, and has a structure that evolves from a solvated porous state to a desolvated non-porous state as a result of ordered cooperative, displacive and conformational changes of the peptide. This behaviour is driven by hydrogen bonding that involves the side-chain hydroxyl groups of the serine. A similar cooperative closure (reminiscent of the folding of proteins) is also displayed with multipeptide solid solutions. For these, the combination of different sequences of amino acids controls the framework's response to the presence of guests in a nonlinear way. This functional control can be compared to the effect of single-point mutations in proteins, in which exchange of single amino acids can radically alter structure and function.


Subject(s)
Peptides/chemistry , Hydrogen Bonding , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...