Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22281203

ABSTRACT

The modern response to pandemics, critical for effective public health measures, is shaped by the availability and integration of diverse epidemiological outbreak data. Genomic surveillance has come to the forefront during the coronavirus disease 2019 (COVID-19) pandemic at both local and global scales to identify variants of concern. Tracking variants of concern (VOC) is integral to understanding the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in space and time. Combining phylogenetics with epidemiological data like case incidence, spatial spread, and transmission dynamics generates actionable information. Here we discuss the genome surveillance done in Pune, India, through sequencing 10,496 samples from infected individuals and integrating them with multiple heterogeneous outbreak data. The rise and fall of VOCs along with shifting transmission dynamics in the time interval of December 2020 to March 2022 was identified. Population-based estimates of the proportion of circulating variants indicated the second and third peak of infection in Pune to be driven by VOCs Kappa (B.1.617.1), Delta (B.1.617.2), and Omicron (B.1.1.529) respectively. Integrating single nucleotide polymorphism changes across all sequenced genomes identified C (Cytosine) > T (Thymine) and G (Guanine) > T (Thymine) substitutions to dominate with higher rates of adaptive evolution in Spike (S), RNA-dependent RNA polymerase (RdRp), and Nucleocapsid (N) genes. Spike Protein mutational profiling during and pre-Omicron VOCs indicated differential rank ordering of high-frequency mutations in specific domains that increased the charge and binding properties of the protein. Time-resolved phylogenetic analysis of Omicron sub-lineages identified specific recombinant X lineages, XZ, XQ, and XM. BA.1 from Pune was found to be highly divergent by global sequence alignment and hierarchical clustering. Our "band of five" outbreak data analytics that includes the integration of five heterogeneous data types indicates that a strong surveillance system with comprehensive high-quality metadata was critical to understand the spatiotemporal evolution of the SARS-CoV-2 genome in Pune. We anticipate the use of such integrated workflows to be critical for pandemic preparedness in the future.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21259295

ABSTRACT

With more than 140 million people infected globally and 3 million deaths, the COVID 19 pandemic has left a lasting impact. A modern response to a pandemic of such proportions needs to focus on exploiting all available data to inform the response in real-time and allow evidence-based decision-making. The intermittent lockdowns in the last 13 months have created economic adversity to prevent anticipated large-scale mortality and relax the lockdowns have been an attempt at recovering and balancing economic needs and public health realities. This article is a comprehensive case study of the outbreak in the city limits of Pune, Maharashtra, India, to understand the evolution of the disease and transmission dynamics starting from the first case on March 9, 2020. A unique collaborative effort between the Pune Municipal Corporation (PMC), a government entity, and the Pune knowledge Cluster (PKC) allowed us to layout a context for outbreak response and intervention. We report here how access to granular data for a metropolitan city with pockets of very high-density populations will help analyze, in real-time, the dynamics of the pandemic and forecasts for better management and control of SARS-CoV-2. Outbreak data analytics resulted in a real-time data visualization dashboard for accurate information dissemination for public access on the epidemics progress. As government agencies craft testing and vaccination policies and implement intervention strategies to mitigate a second wave, our case study underscores the criticality of data quality and analytics to decode community transmission of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...