Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proteomics ; 19(21-22): e1900010, 2019 11.
Article in English | MEDLINE | ID: mdl-31419058

ABSTRACT

While aberrant protein glycosylation is a recognized characteristic of human cancers, advances in glycoanalytics continue to discover new associations between glycoproteins and tumorigenesis. This glycomics-centric study investigates a possible link between protein paucimannosylation, an under-studied class of human N-glycosylation [Man1-3 GlcNAc2 Fuc0-1 ], and cancer. The paucimannosidic glycans (PMGs) of 34 cancer cell lines and 133 tissue samples spanning 11 cancer types and matching non-cancerous specimens are profiled from 467 published and unpublished PGC-LC-MS/MS N-glycome datasets collected over a decade. PMGs, particularly Man2-3 GlcNAc2 Fuc1 , are prominent features of 29 cancer cell lines, but the PMG level varies dramatically across and within the cancer types (1.0-50.2%). Analyses of paired (tumor/non-tumor) and stage-stratified tissues demonstrate that PMGs are significantly enriched in tumor tissues from several cancer types including liver cancer (p = 0.0033) and colorectal cancer (p = 0.0017) and is elevated as a result of prostate cancer and chronic lymphocytic leukaemia progression (p < 0.05). Surface expression of paucimannosidic epitopes is demonstrated on human glioblastoma cells using immunofluorescence while biosynthetic involvement of N-acetyl-ß-hexosaminidase is indicated by quantitative proteomics. This intriguing association between protein paucimannosylation and human cancers warrants further exploration to detail the biosynthesis, cellular location(s), protein carriers, and functions of paucimannosylation in tumorigenesis and metastasis.


Subject(s)
Mannose/metabolism , Neoplasms/metabolism , Cell Line, Tumor , Chromatography, Liquid , Disease Progression , Glycosylation , Humans , Tandem Mass Spectrometry
2.
Mol Oncol ; 11(11): 1595-1615, 2017 11.
Article in English | MEDLINE | ID: mdl-28853212

ABSTRACT

In the era of precision medicine, the tailoring of cancer treatment is increasingly important as we transition from organ-based diagnosis towards a more comprehensive and patient-centric molecular diagnosis. This is particularly the case for high-grade serous adenocarcinomas of the ovary and peritoneum, which are commonly diagnosed at an advanced stage, and collectively treated and managed similarly. We characterized the N- and O-glycome of serous ovarian (OC) and peritoneal cancer (PC) tissues using PGC-LC-ESI-IT-MS/MS profiling and validated the discriminatory glycans and their corresponding glyco-gene expression levels using cell lines and transcriptomic data from 232 patients. Overall, the N- and O-glycan repertoires of both cancer types were found to comprise mostly of α2,6-sialylated glycan structures, with the majority of N-glycans displaying the biantennary mono- and disialylation as well as bisecting-type biantennary glycans. The MS profiling by PGC-LC also revealed several glycan structural isomers that corresponded to LacdiNAc-type (GalNAcß1-4GlcNAc) motifs that were unique to the serous ovarian cancers and that correlated with elevated gene expression of B4GALNT3 and B4GALNT4 in patients with serous cancer. Statistical evaluation of the discriminatory glycans also revealed 13 N- and 3 O-glycans (P < 0.05) that significantly discriminated tumour-sampling sites, with LacdiNAc-type N-glycans (m/z 1205.02- and m/z 1059.42- ) being associated with ovarian-derived cancer tissue and bisecting GlcNAc-type (m/z 994.92- ) and branched N-glycans (m/z 1294.02- and m/z 1148.42- ) upregulated at the metastatic sites. Hence, we demonstrate for the first time that OC and PC display distinct molecular signatures at both their glycomic and transcriptomic levels. These signatures may have potential utility for the development of accurate diagnosis and personalized treatments.


Subject(s)
Cystadenocarcinoma, Serous/genetics , Glycomics , Ovarian Neoplasms/genetics , Peritoneal Neoplasms/genetics , Polysaccharides/analysis , Polysaccharides/genetics , Transcriptome , Cell Line, Tumor , Cystadenocarcinoma, Serous/pathology , Female , Humans , N-Acetylgalactosaminyltransferases/genetics , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/pathology , Tandem Mass Spectrometry/methods
3.
Sci Rep ; 7: 45367, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28358117

ABSTRACT

The (neo-) lacto series glycosphingolipids (nsGSLs) comprise of glycan epitopes that are present as blood group antigens, act as primary receptors for human pathogens and are also increasingly associated with malignant diseases. Beta-1, 3-N-acetyl-glucosaminyl-transferase 5 (B3GNT5) is suggested as the key glycosyltransferase for the biosynthesis of nsGSLs. In this study, we investigated the impact of CRISPR-Cas9 -mediated gene disruption of B3GNT5 (∆B3GNT5) on the expression of glycosphingolipids and N-glycoproteins by utilizing immunostaining and glycomics-based PGC-UHPLC-ESI-QTOF-MS/MS profiling. ∆B3GNT5 cells lost nsGSL expression coinciding with reduction of α2-6 sialylation on N-glycoproteins. In contrast, disruption of B4GALNT1, a glycosyltransferase for ganglio series GSLs did not affect α2-6 sialylation on N-glycoproteins. We further profiled all known α2-6 sialyltransferase-encoding genes and showed that the loss of α2-6 sialylation is due to silencing of ST6GAL1 expression in ∆B3GNT5 cells. These results demonstrate that nsGSLs are part of a complex network affecting N-glycosylation in ovarian cancer cells.


Subject(s)
Glycoproteins/metabolism , Glycosphingolipids/metabolism , N-Acetylgalactosaminyltransferases/genetics , Ovarian Neoplasms/metabolism , CRISPR-Cas Systems , Cell Line, Tumor , Female , Gene Knockout Techniques , Glycomics , HeLa Cells , Humans , Ovarian Neoplasms/genetics
4.
Oncotarget ; 7(32): 51674-51686, 2016 Aug 09.
Article in English | MEDLINE | ID: mdl-27429195

ABSTRACT

Bisecting GlcNAc on N-glycoproteins is described in E-cadherin-, EGF-, Wnt- and integrin- cancer-associated signaling pathways. However, the mechanisms regulating bisecting GlcNAc expression are not clear. Bisecting GlcNAc is attached to N-glycans through beta 1-4 N-acetylglucosaminyl transferase III (MGAT3), which is encoded by two exons flanked by high-density CpG islands. Despite a recently described correlation of MGAT3 and bisecting GlcNAc in ovarian cancer cells, it remains unknown whether DNA methylation is causative for the presence of bisecting GlcNAc. Here, we narrow down the regulatory genomic region and show that reconstitution of MGAT3 expression with 5-Aza coincides with reduced DNA methylation at the MGAT3 transcription start site. The presence of bisecting GlcNAc on released N-glycans was detected by mass spectrometry (LC-ESI-qTOF-MS/MS) in serous ovarian cancer cells upon DNA methyltransferase inhibition. The regulatory impact of DNA methylation on MGAT3 was further evaluated in 18 TCGA cancer types (n = 6118 samples) and the results indicate an improved overall survival in patients with reduced MGAT3 expression, thereby identifying long-term survivors of high-grade serous ovarian cancers (HGSOC). Epigenetic activation of MGAT3 was also confirmed in basal-like breast cancers sharing similar molecular and genetic features with HGSOC. These results provide novel insights into the epigenetic regulation of MGAT3/bisecting GlcNAc and demonstrate the importance of N-glycosylation in cancer progression.


Subject(s)
Acetylglucosamine/metabolism , Epigenesis, Genetic/physiology , N-Acetylglucosaminyltransferases/genetics , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Polysaccharides/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carbohydrate Sequence , Carcinoma, Ovarian Epithelial , CpG Islands , DNA Methylation , Female , Gene Expression Regulation, Neoplastic , HeLa Cells , Humans , K562 Cells , Neoplasms, Glandular and Epithelial/mortality , Ovarian Neoplasms/mortality , Polysaccharides/chemistry , Survival Analysis , Tumor Cells, Cultured
5.
Rapid Commun Mass Spectrom ; 29(7): 545-61, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-26212272

ABSTRACT

RATIONALE: Glycosphingolipids (GSLs) constitute a highly diverse class of glyco-conjugates which are involved in many aspects of cell membrane function and disease. The isolation, detection and structural characterization of the carbohydrate (glycan) component of GSLs are particularly challenging given their structural heterogeneity and thus rely on the development of sensitive, analytical technologies. METHODS: Neutral and acidic GSL standards were immobilized onto polyvinylidene difluoride (PVDF) membranes and glycans were enzymatically released using endoglycoceramidase II (EGCase II), separated by porous graphitized carbon (PGC) liquid chromatography and structurally characterized by negative ion mode electrospray ionization tandem mass spectrometry (PGC-LC/ESI-MS/MS). This approach was then employed for GSLs isolated from 100 mg of serous and endometrioid cancer tissue and from cell line (10(7) cells) samples. RESULTS: Glycans were released from GSL standards comprising of ganglio-, asialo-ganglio- and the relatively resistant globo-series glycans, using as little as 1 mU of enzyme and 2 µg of GSL. The platform of analysis was then applied to GSLs isolated from tissue and cell line samples and the released isomeric and isobaric glycan structures were chromatographically resolved on PGC and characterized by comparison with the MS(2) fragment ion spectra of the glycan standards and by application of known structural MS(2) fragment ions. This approach identified several (neo-)lacto-, globo- and ganglio-series glycans and facilitated the discrimination of isomeric structures containing Lewis A, H type 1 and type 2 blood group antigens and sialyl-tetraosylceramides. CONCLUSION: We describe a relatively simple, detergent-free, enzymatic release of glycans from PVDF-immobilized GSLs, followed by the detailed structural analysis afforded by PGC-LC-ESI-MS/MS, to offer a versatile method for the analysis of tumour and cell-derived GSL-glycans. The method uses the potential of MS(2) fragmentation in negative ion ESI mode to characterize, in detail, the biologically relevant glycan structures derived from GSLs.


Subject(s)
Glycosphingolipids/analysis , Glycosphingolipids/chemistry , Ovarian Neoplasms/chemistry , Polysaccharides/analysis , Polysaccharides/chemistry , Bacterial Proteins/metabolism , Cell Line, Tumor , Chromatography, Liquid/methods , Female , Glycoside Hydrolases/metabolism , Glycosphingolipids/metabolism , Humans , Polysaccharides/metabolism , Polyvinyls , Recombinant Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
6.
Mol Cell Proteomics ; 13(9): 2213-32, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24855066

ABSTRACT

Epithelial ovarian cancer is the fifth most common cause of cancer in women worldwide bearing the highest mortality rate among all gynecological cancers. Cell membrane glycans mediate various cellular processes such as cell signaling and become altered during carcinogenesis. The extent to which glycosylation changes are influenced by aberrant regulation of gene expression is nearly unknown for ovarian cancer and remains crucial in understanding the development and progression of this disease. To address this effect, we analyzed the membrane glycosylation of non-cancerous ovarian surface epithelial (HOSE 6.3 and HOSE 17.1) and serous ovarian cancer cell lines (SKOV 3, IGROV1, A2780, and OVCAR 3), the most common histotype among epithelial ovarian cancers. N-glycans were released from membrane glycoproteins by PNGase F and analyzed using nano-liquid chromatography on porous graphitized carbon and negative-ion electrospray ionization mass spectrometry (ESI-MS). Glycan structures were characterized based on their molecular masses and tandem MS fragmentation patterns. We identified characteristic glycan features that were unique to the ovarian cancer membrane proteins, namely the "bisecting N-acetyl-glucosamine" type N-glycans, increased levels of α 2-6 sialylated N-glycans and "N,N'-diacetyl-lactosamine" type N-glycans. These N-glycan changes were verified by examining gene transcript levels of the enzymes specific for their synthesis (MGAT3, ST6GAL1, and B4GALNT3) using qRT-PCR. We further evaluated the potential epigenetic influence on MGAT3 expression by treating the cell lines with 5-azacytidine, a DNA methylation inhibitor. For the first time, we provide evidence that MGAT3 expression may be epigenetically regulated by DNA hypomethylation, leading to the synthesis of the unique "bisecting GlcNAc" type N-glycans on the membrane proteins of ovarian cancer cells. Linking the observation of specific N-glycan substructures and their complex association with epigenetic programming of their associated synthetic enzymes in ovarian cancer could potentially be used for the development of novel anti-glycan drug targets and clinical diagnostic tools.


Subject(s)
DNA Methylation , Gene Expression Regulation, Neoplastic , Membrane Proteins/metabolism , Ovarian Neoplasms/metabolism , Cell Line , Cell Line, Tumor , Chromatography, Liquid , Epithelial Cells/metabolism , Female , Glycosylation , Glycosyltransferases/genetics , Humans , Polysaccharides/metabolism , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
7.
Proteomics ; 14(4-5): 525-46, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24339177

ABSTRACT

Glycosylation of proteins is one of the most important PTMs, with more than half of all human proteins estimated to be glycosylated. It is widely known that aberrant glycosylation has been implicated in many different diseases due to changes associated with biological function and protein folding. In cancer, there is increasing evidence pertaining to the role of glycosylation in tumour formation and metastasis. Alterations in cell surface glycosylation, particularly terminal motifs, can promote invasive behaviour of tumour cells that ultimately lead to the progression of cancer. While a majority of studies have investigated protein glycosylation changes in cancer cell lines and tumour tissue for individual cancers, the review presented here represents a comprehensive, in-depth overview of literature on the structural changes of glycosylation and their associated synthetic enzymes in five different cancer types originating from the breast, colon, liver, skin and ovary. More importantly, this review focuses on key similarities and differences between these cancers that reflect the importance of structural changes of cell surface N- and O-glycans, such as sialylation, fucosylation, degree of branching and the expression of specific glycosyltransferases for each cancer. It is envisioned that the understanding of these biologically relevant glycan alterations on cellular proteins will facilitate the discovery of novel glycan-based biomarkers which could potentially serve as diagnostic and prognostic indicators of cancer.


Subject(s)
Cell Membrane/metabolism , Glycosyltransferases/genetics , Membrane Proteins/metabolism , Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Glucans/metabolism , Glycosylation , Glycosyltransferases/metabolism , Humans , Membrane Proteins/genetics , Neoplasms/diagnosis , Neoplasms/pathology , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...