Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 396: 112908, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32961215

ABSTRACT

Early ethanol exposure alters neonatal breathing plasticity. Respiratory EtOH's effects are attributed to central respiratory network disruptions, particularly in the medullary serotonin (5HT) system. In this study we evaluated the effects of neonatal pre-exposure to low/moderate doses upon breathing rates, activation patterns of brainstem's nuclei and expression of 5HT 2A and 2C receptors. At PD9, breathing frequencies, tidal volumes and apneas were examined in pups pre-exposed to vehicle or ethanol (2.0 g/kg) at PDs 3, 5 and 7. This developmental stage is equivalent to the 3rd human gestational trimester, characterized by increased levels of synaptogenesis. Pups were tested under sobriety or under the state of ethanol intoxication and when subjected to normoxia or hypoxia. Number of c-Fos and 5HT immunolabelled cells and relative mRNA expression of 5HT 2A and 2C receptors were quantified in the brainstem. Under normoxia, ethanol pre-exposed pups exhibited breathing depressions and a high number of apneas. An opposite phenomenon was found in ethanol pre-treated pups tested under hypoxia where an exacerbated hypoxic ventilatory response (HVR) was observed. The breathing depression was associated with an increase in the neural activation levels of the raphe obscurus (ROb) and a high mRNA expression of the 5HT 2A receptor in the brainstem while desactivation of the ROb and high activation levels in the solitary tract nucleus and area postrema were associated to the exacerbated HVR. In summary, early ethanol experience induces respiratory disruptions indicative of sensitization processes. Neuroadaptive changes in central respiratory areas under consideration appear to be strongly associated with changes in their respiratory plasticity.


Subject(s)
Apnea/chemically induced , Brain Stem/drug effects , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Hypoxia/physiopathology , Proto-Oncogene Proteins c-fos/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Receptor, Serotonin, 5-HT2C/drug effects , Respiration/drug effects , Animals , Animals, Newborn , Nucleus Raphe Obscurus/drug effects , Rats , Rats, Wistar
2.
Alcohol ; 85: 65-76, 2020 06.
Article in English | MEDLINE | ID: mdl-31734305

ABSTRACT

In rats, high ethanol doses during early postnatal life exert deleterious effects upon brain development that impact diverse social and cognitive abilities. This stage in development partially overlaps with the third human gestational trimester, commonly referred to as the brain growth spurt period. At this stage in development, human fetuses and rat neonates (postnatal days [PD] 3-9) exhibit relatively high respiratory rates that are affected by subteratogenic ethanol doses. Recent studies suggest conditioned breathing responses in the developing organism, given that there are explicit associations between exteroceptive stimuli and the state of ethanol intoxication. Furthermore, studies performed with near-term rat fetuses suggest heightened sensitivity to ethanol's motivational effects. The present study was meant to analyze the unconditioned effects of ethanol intoxication and the possible co-occurrence of learning mechanisms that can impact respiratory plasticity, and to analyze the preference for cues that signal the state of intoxication as well as the effects of the drug, related with motor stimulation. Neonatal rats were subjected to differential experiences with salient tactile cues explicitly paired or not paired with the effects of vehicle or ethanol (2.0 g/kg). A tactile discrimination procedure applied during PDs 3, 5, 7, and 9 allowed the identification of the emergence of ethanol-derived non-associative and associative learning processes that affect breathing plasticity, particularly when considering apneic disruptions. Ethanol was found to partially inhibit the disruptions that appeared to be intimately related with stressful circumstances defined by the experimental procedure. Tactile cues paired with the drug's effects were also observed to exert an inhibitory effect upon these breathing disruptions. The level of contingency between a given tactile cue and ethanol intoxication also resulted in significant changes in the probability of seeking this cue in a tactile preference test. In addition, the state of intoxication exerted motor-stimulating effects. When contrasting the data obtained via the analysis of the different dependent variables, it appears that most ethanol-derived changes are modulated by positive and/or negative (anti-anxiety) reinforcing effects of the drug. As a whole, the study indicates co-existence of ethanol-related functional changes in the developing organism that simultaneously affect respiratory plasticity and preference patterns elicited by stimuli that signal ethanol's motivational effects. These results emphasize the need to consider significant alterations due to minimal ethanol experiences that argue against "safe" levels of exposure in a critical stage in brain development.


Subject(s)
Ethanol/pharmacology , Learning/drug effects , Respiration/drug effects , Alcoholic Intoxication/physiopathology , Animals , Animals, Newborn , Conditioning, Classical/drug effects , Cues , Motivation , Rats , Reinforcement, Psychology
3.
Psychopharmacology (Berl) ; 235(4): 983-998, 2018 04.
Article in English | MEDLINE | ID: mdl-29464303

ABSTRACT

RATIONALE: The effects of early ethanol exposure upon neonatal respiratory plasticity have received progressive attention given a multifactorial perspective related with sudden infant death syndrome or hypoxia-associated syndromes. The present preclinical study was performed in 3-9-day-old pups, a stage in development characterized by a brain growth spurt that partially overlaps with the 3rd human gestational trimester. METHODS: Breathing frequencies and apneas were examined in pups receiving vehicle or a relatively moderate ethanol dose (2.0 g/kg) utilizing a whole body plethysmograph. The experimental design also considered possible associations between drug administration stress and exteroceptive cues (plethysmographic context or an artificial odor). Ethanol exposure progressively exerted a detrimental effect upon breathing frequencies. A test conducted at PD9 when pups were under the state of sobriety confirmed ethanol's detrimental effects upon respiratory plasticity (breathing depression). RESULTS: Pre-exposure to the drug also resulted in a highly disorganized respiratory response following a hypoxic event, i.e., heightened apneic episodes. Associative processes involving drug administration procedures and placement in the plethysmographic context also affected respiratory plasticity. Pups that experienced intragastric administrations in close temporal contiguity with such a context showed diminished hyperventilation during hypoxia. In a 2nd test conducted at PD9 while pups were intoxicated and undergoing hypoxia, an attenuated hyperventilatory response was observed. In this test, there were also indications that prior ethanol exposure depressed breathing frequencies during hypoxia and a recovery normoxia phase. CONCLUSION: As a whole, the results demonstrated that brief ethanol experience and stress-related factors significantly disorganize respiratory patterns as well as arousal responses linked to hypoxia in neonatal rats.


Subject(s)
Brain/drug effects , Brain/growth & development , Ethanol/toxicity , Respiratory Mechanics/drug effects , Stress, Psychological/physiopathology , Animals , Animals, Newborn , Ethanol/administration & dosage , Female , Male , Rats , Rats, Wistar , Respiration/drug effects , Respiratory Mechanics/physiology , Stress, Psychological/psychology
4.
Dev Psychobiol ; 58(6): 670-86, 2016 09.
Article in English | MEDLINE | ID: mdl-27255447

ABSTRACT

Fetal and neonatal ethanol-related alterations upon the respiratory system have been described in different mammals. Studies also indicate that perinates learn about the sensory attributes of ethanol and associate them with diverse physiological effects of the state of intoxication. The present study was conducted in rat neonates during a developmental stage equivalent to the third human gestational trimester. The major goal was to analyze the consequences of ethanol odor exposure, the state of intoxication, or the temporal contiguity between these factors upon breathing patterns. The main findings were as follows: (a) a conditioned breathing depression was observed following few trials defined by the association between ethanol odor and the state of intoxication and (b) sequential exposure to ethanol sensitizes the organism to the drug's respiratory depressant effects without affecting ethanol metabolism. These results indicate that early breathing disruptions caused by ethanol can be determined or modulated via learning processes. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58:670-686, 2016.


Subject(s)
Alcoholic Intoxication/physiopathology , Animals, Newborn , Central Nervous System Depressants/pharmacology , Conditioning, Classical/physiology , Ethanol/pharmacology , Respiration/drug effects , Animals , Central Nervous System Depressants/administration & dosage , Ethanol/administration & dosage , Female , Male , Rats , Rats, Wistar , Smell/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...