Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 13(9): 317, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37637004

ABSTRACT

The current study was designed to evaluate the cardio-protective efficacy of Amaranthus viridis L. methanolic extract (AVME) and kaempferol, which was isolated from AVME in isoproterenol (ISO)-induced cardiotoxicity in rats. The rats were pre-treated with AVME (250 mg/kg body weight) and kaempferol (50 mg/kg BW) for 30 days, respectively, and then administered with ISO (20 mg/100 g body weight) on the 31st and 32nd days. We assessed the protective effects of AVME and kaempferol against ISO-induced cardiotoxicity, oxidative stress, and inflammation. The study revealed that supplementation with AVME and kaempferol significantly attenuated cardiac lipotoxicity by reducing cholesterol and triglyceride levels and simultaneously increasing the levels of high-density lipoproteins. In addition, AVME and kaempferol suppressed oxidative stress by enhancing the activities of superoxide dismutase, catalase, and glutathione peroxidase in the heart. Further, they ameliorated cardiac inflammation by mitigating the production of pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6, and interleukin-1ß). Hence, the study results and histopathological analysis emphasized that AVME and kaempferol could be prospective prophylactic agents against ISO-induced cardiotoxicity and may be considered nutraceuticals in the prevention of cardiovascular disorders.

2.
3 Biotech ; 13(8): 289, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37547624

ABSTRACT

In this study, the active components of the plant were carefully extracted and identified using three solvent systems. After extraction, we used solvent systems to further purify the main flavonoid chemical constituent. As a result of our analytical strategy, which included HPLC analysis, MS/MS spectroscopic analysis, and NMR data-based constructions, quercetin was determined to be the main chemical constituent. Our study suggests the potential therapeutic advantages of quercetin, a compound found in the leaves of Acalypha indica, for treating breast cancer cell lines MCF-7 and MDA-MB-231. Our comparison of Quercetin to the regularly prescribed medicine Doxorubicin shows that it has the capacity to inhibit MCF-7 and MDA-MB-231 cells. Measurements of apoptosis and cell cycle phase showed this to be the case. Furthermore, a ladder that formed as a result of cellular damage brought on by ROS provided further proof of the drug's impact on DNA integrity. Notably, pro-apoptotic proteins displayed increased apoptosis activity in cells treated with quercetin. Given that it is extracted from plants and has less adverse effects than other compounds, quercetin is a viable option for further clinical study. The objective is to fight breast cancer, one of the most prevalent diseases in the world and a main cause of death for women. Thus, our research makes a significant addition to the ongoing search for potent, plant-based breast cancer treatments. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03705-w.

3.
Sci Rep ; 12(1): 5868, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393460

ABSTRACT

Cancer cell heterogeneity (CCH) is crucial in understanding cancer progression and metastasis. The CCH is one of the stumbling blocks in modern medicine's therapeutics and diagnostics . An in-vitro model of co-culture systems of MCF-7, HeLa, HEK-293, with THP-1 cells showed the occurrence of EpCAM positive (EpCAM+) and EpCAM negative (EpCAM-) heterogenetic cancer cell types labeled with the Quantum Dot antibody conjugates (QDAb). This in-vitro model study could provide insights into the role of rare cancer cells manifestation and their heterogeneity in metastatic progression and risk for severe infections in these patients. We successfully report the presence of CCH based on the fluorescence ratios of the co-cultured cancer cells when treated with the QDAb. These short-term mimic co-cultures give a compelling and quite associated model for assessing early treatment responses in various cancers.


Subject(s)
Immunoconjugates , Neoplasms , Quantum Dots , Coculture Techniques , Epithelial Cell Adhesion Molecule/metabolism , HEK293 Cells , Humans
4.
Luminescence ; 37(3): 490-499, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35048508

ABSTRACT

Quantum dots (QD) with chemical composition QD CdSe / ZnS _ Ni 650 were successfully synthesized using a hydrothermal method and chemical precipitation. The nanocrystalline phase of the nanostructures was isolated and characterized using X-ray diffraction (XRD). The mean crystalline size doped core/shell Ni-dopant range was 9.0 ± 2.0 nm. The ferromagnetic data revealed the magnetic behaviour of QD CdSe / ZnS _ Ni 650 . The optical absorption measurements of these QDs were in the UV-visible light range 200-800 nm for a band gap value of 2.11 eV for QD CdSe / ZnS _ Ni 650 . This means that pure QD CdSe 650 and QD CdSe / ZnS _ Ni 650 underwent a redshift when compared with bulk CdSe. For QD CdSe / ZnS _ Ni 650 there was successful uptake by cell lines including HeLa and MCF-7 for bioimaging and sorting applications.


Subject(s)
Cadmium Compounds , Quantum Dots , Selenium Compounds , Cadmium Compounds/chemistry , Humans , Quantum Dots/chemistry , Selenium Compounds/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...