Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 40(19): 8961-8988, 2022.
Article in English | MEDLINE | ID: mdl-34014150

ABSTRACT

The COVID-19 pandemic has severely destructed human life worldwide, with no suitable treatment until now. SARS-CoV-2 virus is unprecedented, resistance against number of therapeutics and spreading rapidly with high mortality, which warrants the need to discover new effective drugs to combat this situation. This current study is undertaken to explore the antiviral potential of marine algal compounds to inhibit the viral entry and its multiplication using computational analysis. Among the proven drug discovery targets of SARS-CoV-2, spike glycoprotein and 3-chymotrypsin-like protease are responsible for the virus attachment and viral genome replication in the host cell. In this study, the above-mentioned drug targets were docked with marine algal compounds (sulfated polysaccharides, polysaccharide derivatives and polyphenols) using molecular docking tools (AutoDockTools). The obtained results indicate that κ-carrageenan, laminarin, eckol, trifucol and ß-D-galactose are the top-ranking compounds showing better docking scores with SARS-CoV-2 targets, than the current experimental COVID-19 antiviral drugs like dexamethasone, remdesivir, favipiravir and MIV-150. Further, molecular dynamic simulation, ADMET and density functional theory calculations were evaluated to substantiate the findings. To the best of our knowledge, this is the first report on in silico analysis of aforesaid algal metabolites against SARS-CoV-2 targets. This study concludes that these metabolites can be curative for COVID-19 in the hour of need after further validations in in vitro and in vivo testings.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Spike Glycoprotein, Coronavirus/pharmacology , Pandemics , Molecular Docking Simulation , Peptide Hydrolases , Antiviral Agents/pharmacology , Drug Discovery , Molecular Dynamics Simulation , Glycoproteins , Protease Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...