Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 168: 130-142, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33278441

ABSTRACT

Iron oxide nanoparticles (IONPs) are employed as MRI contrast agents and as effective drug delivery vehicles. However, the limited solubility and biodegradability of these nanoparticles need to be improved for safer biomedical applications. In an attempt to improve the bottlenecks associated with IONPs, the current study focuses on the synthesis of folic acid conjugated, galactoxyloglucan-iron oxide nanoparticles (FAPIONPs), for the loading and controlled release of the encapsulated chemotherapeutic agent doxorubicin (DOX). The as-designed DOX@FAPIONPs induced a dose-dependent increase in cytotoxicity in folate receptor-positive cells through a caspase-mediated programmed cell death pathway while bare DOX demonstrated a non-targeted toxicity profile. Using LC-MS/MS analysis, several major biological processes altered in treated cells, from which, cell cycle, cellular function and maintenance were the most affected. Detailed toxicity studies in healthy mice indicated the absence of any major side effects while bare drugs created substantial organ pathology. Gadolinium-based contrast agents have a risk of adverse effects, including nephrogenic systemic fibrosis overcome by the administration of DOX@FAPIONPs in xenograft mice model. Tumor-targeted biodistribution pattern with a favorable DOX pharmacokinetics will be the driving factor behind the appealing tumor reduction capacity and increased survival benefits demonstrated on solid tumor-bearing mice.


Subject(s)
Drug Delivery Systems/methods , Galactose/chemistry , Glucans/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, Liquid/methods , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Female , Folic Acid/chemistry , Folic Acid/metabolism , Folic Acid/pharmacology , Galactose/pharmacology , Glucans/pharmacology , Humans , Magnetite Nanoparticles/therapeutic use , Mice , Particle Size , Polyethylene Glycols/pharmacology , Tandem Mass Spectrometry/methods , Tissue Distribution/drug effects
2.
Colloids Surf B Biointerfaces ; 193: 111082, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32361551

ABSTRACT

Nanotechnology-based drug delivery research has largely focused on developing well efficient localized delivery therapeutic agents to overcome the limitations of non-specificity and toxicity of conventional chemotherapy. Herein, we constructed a nanoplatform based on a self-assembled polysaccharide-protein conjugate to deliver anti-tumor drug doxorubicin and gold nanoparticles (DOX@PST-BSA AuNPs) for cancer therapy. The self-assembled DOX@PST-BSA AuNPs exhibited higher stability and thermal properties which enable them for drug delivery via passive targeting. The fluorescent property of the drug contributes to the self-monitoring of NPs Biodistribution in vitro and in vivo. Furthermore, the NPs showed negligible cytotoxicity and tissue accumulation in normal cells in vivo. Importantly, the NPs could load the anti-tumor drug with high encapsulation efficiency and competently delivered into the tumor microenvironment thereby inhibit tumor growth significantly through apoptotic induction. Notably, DOX@PST-BSA AuNPs exhibits low systemic toxicity and very few side effects in vivo. Based on the explored features, these NPs could serve as a promising multifunctional drug delivery nanoplatform for cancer therapy.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Drug Delivery Systems , Galactose/chemistry , Glucans/chemistry , Neoplasms/drug therapy , Serum Albumin, Bovine/chemistry , A549 Cells , Animals , Cattle , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Mice , Nanotechnology , Neoplasms/pathology , Particle Size , Surface Properties
3.
Mater Sci Eng C Mater Biol Appl ; 107: 110332, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31761162

ABSTRACT

A variety of naturally derived and synthetic biomaterial scaffolds have been investigated as 3D environments for supporting cell growth and can be used to achieve drug delivery with high loading efficiency. Polysaccharides which enhance the tumour-specific drug release are ideal candidates for scaffold preparation in combination with chemotherapeutic agents for the management of solid tumours by local applications. Galactoxyloglucan (PST001) based porous scaffolds (PS) were prepared by crosslinking and freeze drying with a porosity of 90%. FTIR showed the same functional groups as of PST001 with slight peak shifts and 1200% water absorption was observed. Comparing with PBS, macrophage mediated improved degradation up to 40% in 28 days was observed. The scaffold was relatively non toxic towards normal and cancer cells and there was no epithelial mesenchymal transition (EMT) observed. In vitro drug release profile of doxorubicin (DOX)-loaded scaffold (PSD) showed higher release at acidic pH, apparent in tumour microenvironment, than normal physiological pH. In in vitro assays, cell viability was decreased confirming the drug release potential of the scaffold. DLA tumour was significantly reduced with PSD implantation. The excellent biodegradability of the PS overcome the limitations of non-biodegradable systems which support the sustained release of the drug and degrade after a specific time period. The local tumour reduction potential of the PSD embrace immense application in malignant solid tumour management.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Drug Delivery Systems/methods , Polysaccharides/chemistry , 3T3-L1 Cells , Absorbable Implants , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Cell Line, Tumor , Doxorubicin/pharmacokinetics , Drug Implants , Drug Liberation , Epithelial-Mesenchymal Transition/drug effects , Humans , Male , Materials Testing , Mice , Polysaccharides/pharmacokinetics , Porosity , Rats, Wistar , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...