Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-24681311

ABSTRACT

In the present study, an attempt has been made for characterization and synthesis of pure and Ni-doped α-Fe2O3 (hematite) nanoparticles by chemical precipitation method. The synthesized products have been studied by X-ray diffraction (X-RD), Fourier transform infrared (FTIR) spectroscopy, UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), vibrating sample magnetometer (VSM) and scanning electron microscopy (SEM) techniques. The estimated average diameter of α-Fe2O3 nanoparticles were calculated by using the Debye-Scherrer equation and established as 31 nm. SEM micrographs showed the surface morphology as well as structures and particles distributions of synthesized samples. The UV-Vis DRS showed the indirect and direct band gap energies of pure and Ni-doped α-Fe2O3, these were reduced from 1.9847 to 1.52 eV and 2.0503 to 1.76 eV respectively. This result suggested the dopant enhanced the semiconducting behavior of iron oxide nanoparticles to an extent proportional to its nickel doped in the α-Fe2O3. Further, the magnetic properties of the pure and doped samples were investigated by vibrating sample magnetometer (VSM) and evaluated the information of pure and doped samples exhibited saturated hysteresis loop at room temperature, which is indicating that the weak ferromagnetism in nature of our synthesized samples. In addition, it has been found from the magnetization hysteresis curves of Ni-doping, resulting from increased the saturation of magnetization and reduced the coercivity of used samples. Therefore, the present study showed the reduction in band gap energies and coercive field for α-Fe2O3 nanoparticles due to nickel doped.


Subject(s)
Ferric Compounds/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nickel/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...