Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sports Med ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760635

ABSTRACT

BACKGROUND: Long-term static stretching as well as foam rolling training can increase a joint's range of motion (ROM). However, to date, it is not clear which method is the most effective for increasing ROM. OBJECTIVE: The purpose of this systematic review and meta-analysis was to compare the effects of static stretching and foam rolling training on ROM. METHODS: The literature search was performed in PubMed, Scopus, and Web of Science to find the eligible studies. Eighty-five studies (72 on static stretching; and 13 on foam rolling) were found to be eligible with 204 effect sizes (ESs). For the main analyses, a random-effect meta-analysis was applied. To assess the difference between static stretching and foam rolling, subgroup analyses with a mixed-effect model were applied. Moderating variables were sex, total intervention duration, and weeks of intervention. RESULTS: Static stretch (ES = - 1.006; p < 0.001), as well as foam rolling training (ES = - 0.729; p = 0.001), can increase joint ROM with a moderate magnitude compared with a control condition. However, we did not detect a significant difference between the two conditions in the subgroup analysis (p = 0.228). When the intervention duration was ≤ 4 weeks, however, a significant change in ROM was shown following static stretching (ES = - 1.436; p < 0.001), but not following foam rolling (ES = - 0.229; p = 0.248). Thus, a subgroup analysis indicated a significant favorable effect with static stretching for increasing ROM compared with foam rolling (p < 0.001) over a shorter term (≤ 4 weeks). Other moderator analyses showed no significant difference between static stretch and foam rolling training on ROM. CONCLUSIONS: According to the results, both static stretching and foam rolling training can be similarly recommended to increase joint ROM, unless the training is scheduled for ≤ 4 weeks, in which case static stretching demonstrates a significant advantage. More studies are needed with a high-volume foam rolling training approach as well as foam rolling training in exclusively female participants.

2.
Sports (Basel) ; 12(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38393279

ABSTRACT

The perception of time holds a foundational significance regarding how we elucidate the chronological progression of events. While some studies have examined exercise effects on time perception during exercise periods, there are no studies investigating the effects of exercise fatigue on time perception after an exercise intervention. This study investigated the effects of physical and mental fatigue on time estimates over 30 s immediately post-exercise and 6 min post-test. Seventeen volunteers were subjected to three conditions: physical fatigue, mental fatigue, and control. All participants completed a familiarization session and were subjected to three 30 min experimental conditions (control, physical fatigue (cycling at 65% peak power output), and mental fatigue (Stroop task)) on separate days. Time perception, heart rate, and body temperature were recorded pre-test; at the start of the test; 5, 10, 20, 30 seconds into the interventions; post-test; and at the 6 min follow-up. Rating of perceived exertion (RPE) was recorded four times during the intervention. Physical fatigue resulted in a significant (p = 0.001) underestimation of time compared to mental fatigue and control conditions at the post-test and follow-up, with no significant differences between mental fatigue and control conditions. Heart rate, body temperature, and RPE were significantly (all p = 0.001) higher with physical fatigue compared to mental fatigue and control conditions during the intervention and post-test. This study demonstrated that cycling-induced fatigue led to time underestimation compared to mental fatigue and control conditions. It is crucial to consider that physical fatigue has the potential to lengthen an individual's perception of time estimates in sports or work environments.

3.
J Sport Health Sci ; 13(2): 186-194, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37301370

ABSTRACT

BACKGROUND: It is well known that stretch training can induce prolonged increases in joint range of motion (ROM). However, to date more information is needed regarding which training variables might have greater influence on improvements in flexibility. Thus, the purpose of this meta-analysis was to investigate the effects of stretch training on ROM in healthy participants by considering potential moderating variables, such as stretching technique, intensity, duration, frequency, and muscles stretched, as well as sex-specific, age-specific, and/or trained state-specific adaptations to stretch training. METHODS: We searched through PubMed, Scopus, Web of Science, and SportDiscus to find eligible studies and, finally, assessed the results from 77 studies and 186 effect sizes by applying a random-effect meta-analysis. Moreover, by applying a mixed-effect model, we performed the respective subgroup analyses. To find potential relationships between stretch duration or age and effect sizes, we performed a meta-regression. RESULTS: We found a significant overall effect, indicating that stretch training can increase ROM with a moderate effect compared to the controls (effect size = -1.002; Z = -12.074; 95% confidence interval: -1.165 to -0.840; p < 0.001; I2 = 74.97). Subgroup analysis showed a significant difference between the stretching techniques (p = 0.01) indicating that proprioceptive neuromuscular facilitation and static stretching produced greater ROM than did ballistic/dynamic stretching. Moreover, there was a significant effect between the sexes (p = 0.04), indicating that females showed higher gains in ROM compared to males. However, further moderating analysis showed no significant relation or difference. CONCLUSION: When the goal is to maximize ROM in the long term, proprioceptive neuromuscular facilitation or static stretching, rather than ballistic/dynamic stretching, should be applied. Something to consider in future research as well as sports practice is that neither volume, intensity, nor frequency of stretching were found to play a significant role in ROM yields.


Subject(s)
Muscle Stretching Exercises , Sports , Male , Female , Humans , Range of Motion, Articular/physiology
5.
J Sports Sci Med ; 22(2): 180-188, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37293416

ABSTRACT

Over the last decade, acute increases in range of motion (ROM) in response to foam rolling (FR) have been frequently reported. Compared to stretching, FR-induced ROM increases were not typically accompanied by a performance (e.g., force, power, endurance) deficit. Consequently, the inclusion of FR in warm-up routines was frequently recommended, especially since literature pointed out non-local ROM increases after FR. However, to attribute ROM increases to FR it must be ensured that such adaptations do not occur as a result of simple warm-up effects, as significant increases in ROM can also be assumed as a result of active warm-up routines. To answer this research question, 20 participants were recruited using a cross-over design. They performed 4x45 seconds hamstrings rolling under two conditions; FR, and sham rolling (SR) using a roller board to imitate the foam rolling movement without the pressure of the foam rolling. They were also tested in a control condition. Effects on ROM were tested under passive, active dynamic as well as ballistic conditions. Moreover, to examine non-local effects the knee to wall test (KtW) was used. Results showed that both interventions provided significant, moderate to large magnitude increases in passive hamstrings ROM and KtW respectively, compared to the control condition (p = 0.007-0.041, d = 0.62-0.77 and p = 0.002-0.006, d = 0.79-0.88, respectively). However, the ROM increases were not significantly different between the FR and the SR condition (p = 0.801, d = 0.156 and p = 0.933, d = 0.09, respectively). No significant changes could be obtained under the active dynamic (p = 0.65) while there was a significant decrease in the ballistic testing condition with a time effect (p < 0.001). Thus, it can be assumed that potential acute increases in ROM cannot be exclusively attributed to FR. It is therefore speculated that warm up effects could be responsible independent of FR or imitating the rolling movement, which indicates there is no additive effect of FR or SR to the dynamic or ballistic range of motion.


Subject(s)
Hamstring Muscles , Warm-Up Exercise , Humans , Hamstring Muscles/physiology , Range of Motion, Articular/physiology , Cross-Over Studies , Movement
6.
Int J Sports Phys Ther ; 18(2): 285-287, 2023.
Article in English | MEDLINE | ID: mdl-37020433

ABSTRACT

Over the last approximately 20 years, research has reported on performance impairments following prolonged durations of static stretching. This has led to a paradigm shift towards dynamic stretching. There has also been a greater emphasis using foam rollers, vibration devices, and other techniques. Recent commentaries and meta-analyses suggest that stretching need not be listed as a fitness component as other activities such as resistance training can provide similar range of motion benefits. The commentary aims to review and compare the effects of static stretching and alternative exercises for improving range of motion.

7.
Eur J Appl Physiol ; 123(8): 1837-1850, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37072505

ABSTRACT

PURPOSE: Muscle stretching effect on the range of motion (ROM) and force deficit in non-stretched muscle, and the underlying mechanisms, is an ongoing issue. This study aimed to investigate crossover stretching effects and mechanisms on the plantar flexor muscles. METHODS: Fourteen recreationally active females (n = 5) and males (n = 9) performed six sets of 45-s static stretching (SS) (15-s recovery) to the point of discomfort of the dominant leg (DL) plantar flexors or control (345-s rest). Participants were tested for a single 5-s pre- and post-test maximal voluntary isometric contraction (MVIC) with each plantar flexor muscle and were tested for DL and non-DL ROM. They were tested pre- and post-test (immediate, 10-s, 30-s) for the Hoffman (H)-reflex and motor-evoked potentials (MEP) from transcranial magnetic stimulation in the contralateral, non-stretched muscle. RESULTS: Both the DL and non-DL-MVIC force had large magnitude, significant (↓10.87%, p = 0.027, pƞ2 = 0.4) and non-significant (↓9.53%, p = 0.15, pƞ2 = 0.19) decreases respectively with SS. The SS also significantly improved the DL (6.5%, p < 0.001) and non-DL (5.35%, p = 0.002) ROM. The non-DL MEP/MMax and HMax/MMax ratio did not change significantly. CONCLUSION: Prolonged static stretching improved the stretched muscle's ROM. However, the stretched limb's force was negatively affected following the stretching protocol. The ROM improvement and large magnitude force impairment (statistically non-significant) were transferred to the contralateral muscles. The lack of significant changes in spinal and corticospinal excitability confirms that the afferent excitability of the spinal motoneurons and corticospinal excitability may not play a substantial role in non-local muscle's ROM or force output responses.


Subject(s)
Muscle Stretching Exercises , Muscle, Skeletal , Male , Female , Humans , Muscle, Skeletal/physiology , Reflex , Isometric Contraction/physiology , Evoked Potentials, Motor/physiology , Electromyography/methods , Muscle Contraction/physiology
8.
Sports Med ; 53(3): 707-722, 2023 03.
Article in English | MEDLINE | ID: mdl-36622555

ABSTRACT

BACKGROUND: Although it is known that resistance training can be as effective as stretch training to increase joint range of motion, to date no comprehensive meta-analysis has investigated the effects of resistance training on range of motion with all its potential affecting variables. OBJECTIVE: The objective of this systematic review with meta-analysis was to evaluate the effect of chronic resistance training on range of motion compared either to a control condition or stretch training or to a combination of resistance training and stretch training to stretch training, while assessing moderating variables. DESIGN: For the main analysis, a random-effect meta-analysis was used and for the subgroup analysis a mixed-effect model was implemented. Whilst subgroup analyses included sex and participants' activity levels, meta-regression included age, frequency, and duration of resistance training. DATA SOURCES: Following the systematic search in four databases (PubMed, Scopus, SPORTDiscus, and Web of Science) and reference lists, 55 studies were found to be eligible. ELIGIBILITY CRITERIA: Controlled or randomized controlled trials that separately compared the training effects of resistance training exercises with either a control group, stretching group, or combined stretch and resistance training group on range of motion in healthy participants. RESULTS: Resistance training increased range of motion (effect size [ES] = 0.73; p < 0.001) with the exception of no significant range of motion improvement with resistance training using only body mass. There were no significant differences between resistance training versus stretch training (ES = 0.08; p = 0.79) or between resistance training and stretch training versus stretch training alone (ES = - 0.001; p = 0.99). Although "trained or active people" increased range of motion (ES = 0.43; p < 0.001) "untrained and sedentary" individuals had significantly (p = 0.005) higher magnitude range of motion changes (ES = 1.042; p < 0.001). There were no detected differences between sex and contraction type. Meta-regression showed no effect of age, training duration, or frequency. CONCLUSIONS: As resistance training with external loads can improve range of motion, stretching prior to or after resistance training may not be necessary to enhance flexibility.


Subject(s)
Resistance Training , Humans , Exercise Therapy , Exercise , Range of Motion, Articular , Muscle, Skeletal
9.
Sports Med ; 51(5): 945-959, 2021 May.
Article in English | MEDLINE | ID: mdl-33459990

ABSTRACT

BACKGROUND: Stretching a muscle not only increases the extensibility or range of motion (ROM) of the stretched muscle or joint but there is growing evidence of increased ROM of contralateral and other non-local muscles and joints. OBJECTIVE: The objective of this meta-analysis was to quantify crossover or non-local changes in passive ROM following an acute bout of unilateral stretching and to examine potential dose-response relations. METHODS: Eleven studies involving 14 independent measures met the inclusion criteria. The meta-analysis included moderating variables such as sex, trained state, stretching intensity and duration. RESULTS: The analysis revealed that unilateral passive static stretching induced moderate magnitude (standard mean difference within studies: SMD: 0.86) increases in passive ROM with non-local, non-stretched joints. Moderating variables such as sex, trained state, stretching intensity, and duration did not moderate the results. Although stretching duration did not present statistically significant differences, greater than 240-s of stretching (SMD: 1.24) exhibited large magnitude increases in non-local ROM compared to moderate magnitude improvements with shorter (< 120-s: SMD: 0.72) durations of stretching. CONCLUSION: Passive static stretching of one muscle group can induce moderate magnitude, global increases in ROM. Stretching durations greater than 240 s may have larger effects compared with shorter stretching durations.


Subject(s)
Muscle Stretching Exercises , Adult , Cross-Over Studies , Humans , Muscle, Skeletal , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL
...