Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chaos ; 33(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37549123

ABSTRACT

We present a modular framework for generating synthetic power grids that consider the heterogeneity of real power grid dynamics but remain simple and tractable. This enables the generation of large sets of synthetic grids for a wide range of applications. For the first time, our synthetic model also includes the major drivers of fluctuations on short-time scales and a set of validators that ensure the resulting system dynamics are plausible. The synthetic grids generated are robust and show good synchronization under all evaluated scenarios, as should be expected for realistic power grids. A software package that includes an efficient Julia implementation of the framework is released as a companion to the paper.

2.
Chaos ; 33(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37486668

ABSTRACT

Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches.

3.
Entropy (Basel) ; 24(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36421545

ABSTRACT

In recurrence analysis, the τ-recurrence rate encodes the periods of the cycles of the underlying high-dimensional time series. It, thus, plays a similar role to the autocorrelation for scalar time-series in encoding temporal correlations. However, its Fourier decomposition does not have a clean interpretation. Thus, there is no satisfactory analogue to the power spectrum in recurrence analysis. We introduce a novel method to decompose the τ-recurrence rate using an over-complete basis of Dirac combs together with sparsity regularization. We show that this decomposition, the inter-spike spectrum, naturally provides an analogue to the power spectrum for recurrence analysis in the sense that it reveals the dominant periodicities of the underlying time series. We show that the inter-spike spectrum correctly identifies patterns and transitions in the underlying system in a wide variety of examples and is robust to measurement noise.

4.
Nat Commun ; 13(1): 4593, 2022 08 06.
Article in English | MEDLINE | ID: mdl-35933555

ABSTRACT

The dynamics of power consumption constitutes an essential building block for planning and operating sustainable energy systems. Whereas variations in the dynamics of renewable energy generation are reasonably well studied, a deeper understanding of the variations in consumption dynamics is still missing. Here, we analyse highly resolved residential electricity consumption data of Austrian, German and UK households and propose a generally applicable data-driven load model. Specifically, we disentangle the average demand profiles from the demand fluctuations based purely on time series data. We introduce a stochastic model to quantitatively capture the highly intermittent demand fluctuations. Thereby, we offer a better understanding of demand dynamics, in particular its fluctuations, and provide general tools for disentangling mean demand and fluctuations for any given system, going beyond the standard load profile (SLP). Our insights on the demand dynamics may support planning and operating future-compliant (micro) grids in maintaining supply-demand balance.


Subject(s)
Electricity , Renewable Energy , Austria , Family Characteristics , Forecasting
5.
Eur Phys J Spec Top ; 230(16-17): 3273-3280, 2021.
Article in English | MEDLINE | ID: mdl-34221247

ABSTRACT

The epidemic threshold of a social system is the ratio of infection and recovery rate above which a disease spreading in it becomes an epidemic. In the absence of pharmaceutical interventions (i.e. vaccines), the only way to control a given disease is to move this threshold by non-pharmaceutical interventions like social distancing, past the epidemic threshold corresponding to the disease, thereby tipping the system from epidemic into a non-epidemic regime. Modeling the disease as a spreading process on a social graph, social distancing can be modeled by removing some of the graphs links. It has been conjectured that the largest eigenvalue of the adjacency matrix of the resulting graph corresponds to the systems epidemic threshold. Here we use a Markov chain Monte Carlo (MCMC) method to study those link removals that do well at reducing the largest eigenvalue of the adjacency matrix. The MCMC method generates samples from the relative canonical network ensemble with a defined expectation value of λ max . We call this the "well-controlling network ensemble" (WCNE) and compare its structure to randomly thinned networks with the same link density. We observe that networks in the WCNE tend to be more homogeneous in the degree distribution and use this insight to define two ad-hoc removal strategies, which also substantially reduce the largest eigenvalue. A targeted removal of 80% of links can be as effective as a random removal of 90%, leaving individuals with twice as many contacts. Finally, by simulating epidemic spreading via either an SIS or an SIR model on network ensembles created with different link removal strategies (random, WCNE, or degree-homogenizing), we show that tipping from an epidemic to a non-epidemic state happens at a larger critical ratio between infection rate and recovery rate for WCNE and degree-homogenized networks than for those obtained by random removals.

7.
Chaos ; 30(6): 063140, 2020 06.
Article in English | MEDLINE | ID: mdl-32611078
8.
Chaos ; 30(1): 013130, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32013502

ABSTRACT

Frequency measurements indicate the state of a power grid. In fact, deviations from the nominal frequency determine whether the grid is stable or in a critical situation. We aim to understand the fluctuations of the frequency on multiple time scales with a recently proposed method based on detrended fluctuation analysis. It enables us to infer characteristic time scales and generate stochastic models. We capture and quantify known features of the fluctuations like periodicity due to the trading market, response to variations by control systems, and stability of the long time average. We discuss similarities and differences between the British grid and the continental European grid.

9.
Sci Rep ; 6: 35435, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27759055

ABSTRACT

Complex systems involving a large number of degrees of freedom, generally exhibit non-stationary dynamics, which can result in either continuous or discontinuous sample paths of the corresponding time series. The latter sample paths may be caused by discontinuous events - or jumps - with some distributed amplitudes, and disentangling effects caused by such jumps from effects caused by normal diffusion processes is a main problem for a detailed understanding of stochastic dynamics of complex systems. Here we introduce a non-parametric method to address this general problem. By means of a stochastic dynamical jump-diffusion modelling, we separate deterministic drift terms from different stochastic behaviors, namely diffusive and jumpy ones, and show that all of the unknown functions and coefficients of this modelling can be derived directly from measured time series. We demonstrate appli- cability of our method to empirical observations by a data-driven inference of the deterministic drift term and of the diffusive and jumpy behavior in brain dynamics from ten epilepsy patients. Particularly these different stochastic behaviors provide extra information that can be regarded valuable for diagnostic purposes.


Subject(s)
Behavior , Models, Theoretical , Stochastic Processes , Algorithms , Brain/physiology , Humans
11.
Sci Rep ; 6: 27452, 2016 06 10.
Article in English | MEDLINE | ID: mdl-27282347

ABSTRACT

Emergent extreme events are a key characteristic of complex dynamical systems. The main tool for detailed and deep understanding of their stochastic dynamics is the statistics of time intervals of extreme events. Analyzing extensive experimental data, we demonstrate that for the velocity time series of fully-developed turbulent flows, generated by (i) a regular grid; (ii) a cylinder; (iii) a free jet of helium, and (iv) a free jet of air with the Taylor Reynolds numbers Reλ from 166 to 893, the interoccurrence time distributions P(τ) above a positive threshold Q in the inertial range is described by a universal q- exponential function, P(τ) = ß(2 - q)[1 - ß(1 - q)τ](1/(1-q)), which may be due to the superstatistical nature of the occurrence of extreme events. Our analysis provides a universal description of extreme events in turbulent flows.

12.
Article in English | MEDLINE | ID: mdl-23848659

ABSTRACT

Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the "waiting times" series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2

SELECTION OF CITATIONS
SEARCH DETAIL
...