Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Waste Manag Res ; : 734242X241248730, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725243

ABSTRACT

Waste management and the economy are intertwined in various ways. Adopting sustainable waste management techniques can contribute to economic growth and resource conservation. Artificial intelligence (AI)-based classification is very crucial for rapid and contactless classification of metals in electronic waste (e-waste) management. In the present research work, five types of aluminium alloys, because of their extensive use in structural, electrical and thermotechnical functions in the electronics industry, were taken. Laser-induced breakdown spectroscopy (LIBS), a spectral identifier technique, was employed in conjunction with machine learning (ML) classification models of AI. Principal component analysis (PCA), an unsupervised ML classifier, was found incapable to differentiate LIBS data of alloys. Supervised ML classifier was then trained (for 10-fold cross-validation) on randomly selected 80% and tested on 20% spectral data of each alloy to assess classification capacity of each. In most of the tested variants of K nearest neighbour (kNN) the resulting accuracy was lower than 30% but kNN ensembled with random subspace method showed improved accuracy up to 98%. This study revealed that an AI-based LIBS system can classify e-waste alloys rather effectively in a non-contactless mode and could potentially be connected with robotic systems, hence, minimizing manual labour.

2.
J Mol Graph Model ; 121: 108432, 2023 06.
Article in English | MEDLINE | ID: mdl-36806125

ABSTRACT

A variety of organic solar cells has been discovered, but there is a need for efficient optoelectronic material to obtain high power conversion efficiency. In this study, we derived new molecules from Z-shaped heptazethrene. We measured its photovoltaic parameters, including frontier molecular orbitals (where the energy gap decreases to 16% as compared to the reference), molecular electrostatic potential maps (more nucleophilic core), the density of states (partial and total), absorbance in Vis-IR region (in the range of 650-1000 nm), transition density matrix, and hole-electron mobility in terms of reorganization energy that showed 11% higher electron mobility (λe) and 52% higher hole mobility (λh) as compared to the reference. A comparable power conversion efficiency (∼9%) is obtained from a single photon. Using the concept of singlet fission, we can increase the efficiency twice using a single photon (based on the diradical character of the molecule). The diradical character of the entitled molecules was also calculated. The designed molecules fulfil the criteria of singlet fission that generate two excited triplets from a single photon (ES1>2ET1). The designed molecules are more stable than the reference indicated by the singlet-triplet energy gap, which is 37% higher. Hence this work assists the researcher in enhancing the efficiency of the solar cell.


Subject(s)
Electrons , Polycyclic Aromatic Hydrocarbons , Static Electricity
3.
Polymers (Basel) ; 14(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35335442

ABSTRACT

Pentacene is a well-known conjugated organic molecule with high mobility and a sensitive photo response. It is widely used in electronic devices, such as in organic thin-film transistors (OTFTs), organic light-emitting diodes (OLEDs), photodetectors, and smart sensors. With the development of flexible and wearable electronics, the deposition of good-quality pentacene films in large-scale organic electronics at the industrial level has drawn more research attention. Several methods are used to deposit pentacene thin films. The thermal evaporation technique is the most frequently used method for depositing thin films, as it has low contamination rates and a well-controlled deposition rate. Solution-processable methods such as spin coating, dip coating, and inkjet printing have also been widely studied because they enable large-scale deposition and low-cost fabrication of devices. This review summarizes the deposition principles and control parameters of each deposition method for pentacene and its derivatives. Each method is discussed in terms of experimentation and theory. Based on film quality and device performance, the review also provides a comparison of each method to provide recommendations for specific device applications.

4.
Sensors (Basel) ; 21(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34372186

ABSTRACT

We propose a physical activity recognition and monitoring framework based on wearable sensors during maternity. A physical activity can either create or prevent health issues during a given stage of pregnancy depending on its intensity. Thus, it becomes very important to provide continuous feedback by recognizing a physical activity and its intensity. However, such continuous monitoring is very challenging during the whole period of maternity. In addition, maintaining a record of each physical activity, and the time for which it was performed, is also a non-trivial task. We aim at such problems by first recognizing a physical activity via the data of wearable sensors that are put on various parts of body. We avoid the use of smartphones for such task due to the inconvenience caused by wearing it for activities such as "eating". In our proposed framework, a module worn on body consists of three sensors: a 3-axis accelerometer, 3-axis gyroscope, and temperature sensor. The time-series data from these sensors are sent to a Raspberry-PI via Bluetooth Low Energy (BLE). Various statistical measures (features) of this data are then calculated and represented in features vectors. These feature vectors are then used to train a supervised machine learning algorithm called classifier for the recognition of physical activity from the sensors data. Based on such recognition, the proposed framework sends a message to the care-taker in case of unfavorable situation. We evaluated a number of well-known classifiers on various features developed from overlapped and non-overlapped window size of time-series data. Our novel dataset consists of 10 physical activities performed by 61 subjects at various stages of maternity. On the current dataset, we achieve the highest recognition rate of 89% which is encouraging for a monitoring and feedback system.


Subject(s)
Wearable Electronic Devices , Algorithms , Exercise , Female , Humans , Pregnancy , Recognition, Psychology , Time
5.
Entropy (Basel) ; 22(8)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-33286570

ABSTRACT

We propose an image-based class retrieval system for ancient Roman Republican coins that can be instrumental in various archaeological applications such as museums, Numismatics study, and even online auctions websites. For such applications, the aim is not only classification of a given coin, but also the retrieval of its information from standard reference book. Such classification and information retrieval is performed by our proposed system via a user friendly graphical user interface (GUI). The query coin image gets matched with exemplar images of each coin class stored in the database. The retrieved coin classes are then displayed in the GUI along with their descriptions from a reference book. However, it is highly impractical to match a query image with each of the class exemplar images as there are 10 exemplar images for each of the 60 coin classes. Similarly, displaying all the retrieved coin classes and their respective information in the GUI will cause user inconvenience. Consequently, to avoid such brute-force matching, we incrementally vary the number of matches per class to find the least matches attaining the maximum classification accuracy. In a similar manner, we also extend the search space for coin class to find the minimal number of retrieved classes that achieve maximum classification accuracy. On the current dataset, our system successfully attains a classification accuracy of 99% for five matches per class such that the top ten retrieved classes are considered. As a result, the computational complexity is reduced by matching the query image with only half of the exemplar images per class. In addition, displaying the top 10 retrieved classes is far more convenient than displaying all 60 classes.

6.
Sci Total Environ ; 727: 138610, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32330718

ABSTRACT

The United Nation is achieving its sustainable development objectives by focusing on the greener technologies for waste to energy (WTE) conversion. This necessitates the exploration of every conceivable sustainable route in different sectors. Among these, sustainable bio-economy, electricity, and waste management are the most dynamic areas. However, till now sustainability judgments for the generation of electricity from waste-to-energy supply chain (WTE-SC) technologies have been restricted in scale with respect to the three-dimensional sustainability structure (social, environmental, and economic). In most of the cases, the assessments were controlled by various environmental factors/indicators, via overlooking the economic and social indicators. In this review, we have tried to summarize a variety of state-of-the-art WTE technologies including biological and thermal treatment, landfill gas utilization and biorefineries technologies etc. These technologies can be implemented by various policy makers and agencies to deal with the communities fear before spreading and executing the relevant rules and regulations. The implementation of these rules and regulations for WTE-SC were scheduled to decide the barriers and challenges from the perspective of finance, institution, technology, and regulation.


Subject(s)
Refuse Disposal , Waste Management , Electricity , Solid Waste , Waste Disposal Facilities
7.
Sensors (Basel) ; 19(13)2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31323933

ABSTRACT

The paper proposes a sensors platform to control a barrier that is installed for vehicles entrance. This platform is automatized by image-based license plate recognition of the vehicle. However, in situations where standardized license plates are not used, such image-based recognition becomes non-trivial and challenging due to the variations in license plate background, fonts and deformations. The proposed method first detects the approaching vehicle via ultrasonic sensors and, at the same time, captures its image via a camera installed along with the barrier. From this image, the license plate is automatically extracted and further processed to segment the license plate characters. Finally, these characters are recognized with the help of a standard optical character recognition (OCR) pipeline. The evaluation of the proposed system shows an accuracy of 98% for license plates extraction, 96% for character segmentation and 93% for character recognition.

8.
Appl Spectrosc ; 73(1): 30-39, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29972315

ABSTRACT

The qualitative and quantitative analysis of doped nanomaterial containing iron (Fe) and tin (Sn) nanoparticles was investigated using laser-induced breakdown spectroscopy (LIBS). Doped nanoparticles were prepared via co-precipitation and hydrothermal processes. The emission spectra of ablated plasma of doped material revealed the existence of different species in the doped nanomaterial. Simple calibration-free LIBS (CF-LIBS) and internal reference self-absorption correction (IRSAC) CF-LIBS approaches were applied to emission spectra of nanomaterial for quantitative analysis. For both approaches, different spectroscopic parameters such as plasma temperature and electron number density were also determined. Plasma temperature was estimated using a Boltzmann plot and Saha-Boltzmann plot while electron number density was estimated by Stark broadening methods and Saha-Boltzmann equations. Results of both calibration-free approaches were compared with a weight percentage method and other recognized techniques such as laser ablation time of flight (LA-TOF) spectroscopy and energy dispersive X-ray (EDX). We concluded that our results provide good agreement with experimental data obtained using LA-TOF spectroscopy and a small deviation from data obtained using the EDX technique. The current work confirms LIBS as a valid analytical approach for quantitative analysis of nanomaterials.

9.
Toxicol Ind Health ; 34(11): 753-763, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30227779

ABSTRACT

Zinc oxide nanoparticles (ZnONPs) are being used extensively in manufacturing skin lotions and food products and in various biological and pharmaceutical industries because of their immunomodulatory and antimicrobial properties. In this study, ZnONPs were synthesized by a precipitation method and characterized by X-ray diffraction (XRD) techniques, scanning electron microscopy (SEM), and ultraviolet-visible spectroscopy to investigate their structural, morphological, and optical properties. For in vivo evaluation, 40 healthy albino mice were randomly allocated to four equal groups among which the first one was the control group, while the second, third, and fourth were treated with carbon tetrachloride (CCl4), a blend of CCl4 and ZnONPs, and ZnONPs alone, respectively, for 21 days. The XRD analysis confirmed hexagonal wurtzite type structures having an average crystallite size of 41.54 nm. The morphology of ZnONPs analyzed through SEM showed uniform distribution of the grains and shape of the synthesized oxide. The energy band gap of the ZnONPs was found to be 3.498 eV. Hepatic and renal damage following CCl4 administration was apparent after 14 days and was increased at the 21st day, showing nodular fibrotic masses in the liver and bumpy surfaces in the kidney as observed by gross and histological examination. Coadministration of ZnONPs (15 mg/kg b.w. intragastrically 5 days a week) significantly prevented the CCl4-dependent increases in alanine transaminase, aspartate transaminase, creatinine, and urea levels, suggesting a protective potential of ZnONPs.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Animals , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/pathology , Female , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Male , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Mice , Zinc Oxide/chemical synthesis , Zinc Oxide/chemistry , Zinc Oxide/toxicity
10.
Naunyn Schmiedebergs Arch Pharmacol ; 391(10): 1053-1062, 2018 10.
Article in English | MEDLINE | ID: mdl-29936585

ABSTRACT

The upsurge in copper oxide nanoparticle (CuONP) applications in various fields triggers hazardous effects on health. Resveratrol, a polyphenol found in plants of stilbene class, has been reported to decrease oxidative stress. The current study investigated the protective effect of resveratrol (RVT) against CuONP-induced hepatotoxicity and nephrotoxicity in male Wistar rats. CuONPs were prepared by precipitation method and characterized by X-ray diffraction (XRD) technique and scanning electron microscopy (SEM). Average crystallite size, lattice parameters (a, b, and c), volume of unit cell, and X-ray density were found to be 33 nm, (a = 4.691 Å, b = 3.409 Å, and c = 5.034 Å), 79.4 Å3, and 6.506 g/cm3, respectively, from XRD pattern. SEM showed uniform morphology of synthesized nanoparticles. Severe hepatic and renal injury was found in CuONP (300 mg/kg/day intragastrically (i.g.)) group after 7 days as shown by significantly increased serum levels of ALT, AST, creatinine, urea, and total oxidant status along with histopathological alterations. Resveratrol (60 mg/kg) treatment prevented the toxic effects induced by CuONPs. In conclusion, our data showed protective activity of resveratrol against toxic effects of copper oxide nanoparticles presumably through its antioxidant properties. Graphical abstract ᅟ.


Subject(s)
Antioxidants/pharmacology , Copper/toxicity , Nanoparticles/toxicity , Resveratrol/pharmacology , Animals , Creatinine/blood , Kidney/drug effects , Kidney/pathology , Male , Oxidative Stress/drug effects , Rats, Wistar , Urea/blood
11.
ACS Appl Mater Interfaces ; 4(12): 6735-46, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23143856

ABSTRACT

The first quantitative comparison between self-assembled monolayers of homologous carboxylate- and phosphonate-terminated organic dyes that are of use in dye-sensitized solar cells (DSSCs) is reported. (Cyanovinyl)phosphonate-terminated oligothiophenes and (cyanovinyl)carboxylate-terminated oligothiophenes were synthesized on TiO(2) thin film electrodes. Structurally analogous organics were compared for the effect of the anchoring groups on photochemical properties in solution as measured by UV/vis spectroscopy and for reactivity with the electrode surface. Monolayers were grown on the TiO(2) electrodes either by "tethering by aggregation and growth" (T-BAG) or by solution dipping. Surface roughness and homogeneity, elemental composition, and thickness of the monolayers were evaluated by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and ellipsometry. Molecular loadings for each monolayer on TiO(2) were quantified by quartz crystal microgravimetry (QCM), and the stability of bonding between each class of dyes and the TiO(2) was evaluated by measuring desorption, also by QCM; the carboxylates underwent significant dissociation in aqueous media but the phosphonates did not. DSSCs were prepared from each congener and from simple oligothiophene phosphonates to determine the effect of the cyanovinyl group on device behavior; all DSSCs were studied under irradiation from a AM 1.5G solar light source; the effect of cyanovinyl group termination was comparable to that of adding a thiophene moiety, and the DSSC using a self-assembled monolayer of (sexithiophene)phosphonate (6TP) had total power conversion efficiency (η) of ca. 5%.

SELECTION OF CITATIONS
SEARCH DETAIL
...