Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 14(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35631269

ABSTRACT

In the past decades, the regulation of pro-inflammatory cytokine production, including interleukin-8 (IL-8), has been the goal of many targeted therapeutic interventions for Necrotising enterocolitis (NEC), a gastrointestinal disease commonly associated with a very low birth weight in preterm infants. In this study, the ability to regulate the production of IL-8 of the water-soluble non-starch polysaccharide (WS-NSP) from taro corm (Tc-WS-NSP) extracted using a conventional (CE) or improved conventional (ICE) extraction method, of the probiotics Lactobacillus acidophilus, Bifidobacterium breve, and Bifidobacterium infantis, and their synbiotic mixtures were evaluated. The TNF-α stimulated HT-29 cells were incubated with undigested or digested Tc-WS-NSPs (CE or ICE), probiotics, and their synbiotic mixtures with Klebsiella oxytoca, an NEC-positive-associated pathogen. Overall, the synbiotic mixtures of digested Tc-WS-NSP-ICE and high bacterial concentrations of L. acidophilus (5.57 × 109), B. breve (2.7 × 108 CFU/mL), and B. infantis (1.53 × 108) demonstrated higher (42.0%, 45.0%, 43.1%, respectively) ability to downregulate IL-8 compared to the sole use of Tc-WS-NSPs (24.5%), or the probiotics L. acidophilus (32.3%), B. breve (37.8%), or B. infantis (33.1%). The ability demonstrated by the Tc-WS-NSPs, the probiotics, and their synbiotics mixtures to downregulate IL-8 production in the presence of an NEC-positive-associated pathogen may be useful in the development of novel prophylactic agents against NEC.


Subject(s)
Bifidobacterium breve , Colocasia , Enterocolitis, Necrotizing , Probiotics , Synbiotics , Bifidobacterium , Bifidobacterium longum subspecies infantis , Cytokines , Enterocolitis, Necrotizing/prevention & control , Humans , Infant , Infant, Newborn , Infant, Premature , Interleukin-8 , Lactobacillus acidophilus , Polysaccharides/pharmacology , Probiotics/pharmacology , Probiotics/therapeutic use , Water
2.
Crit Rev Food Sci Nutr ; 62(9): 2309-2341, 2022.
Article in English | MEDLINE | ID: mdl-33325725

ABSTRACT

This review critically evaluates and discusses groundwork and recent studies on the extraction, characteristics, properties, bioactivities, and applications of the water-soluble non-starch polysaccharides (WS-NSPs) of root and tuber crops. Early studies have focused on the use of conventional extraction methods for the extraction of the WS-NSPs and there are limited information on the characteristics and properties of the extracted materials. In recent years, novel extraction techniques such as microwave, ultrasound, and enzyme-assisted extractions have been utilized to improve the yield and functionality of the WS-NSPs. However, low yield and co-extraction of other biological compounds remain a challenging obstacle for commercial uses. A better understanding of the characteristics and properties was recently afforded by employing advanced analytical techniques to investigate the chemical composition and molecular structures of the WS-NSPs. Recent bioactivities of the WS-NSPs that demonstrated their potential in the prevention and management of metabolic diseases like diabetes, obesity, cancer, and in improving gut health and immunity had received considerable attention. Also, many studies have confirmed the potential use of the WS-NSPs of root and tuber crops in a wide range of food and pharmaceutical applications. These bioactivities of WS-NSPs warrant further investigations on this interesting biomaterial.


Subject(s)
Polysaccharides , Water , Food , Plant Tubers/chemistry , Polysaccharides/chemistry , Water/analysis
3.
Food Chem ; 349: 129210, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33582541

ABSTRACT

This study investigated the effects of an improved extraction method that utilized freeze-thaw, termed improved conventional extraction (ICE), on the yield and properties of the water-soluble non-starch polysaccharide of taro (Tc-WS-NSP) and compared this method to the conventional extraction (CE) method. The freeze-thaw condition was optimized using response surface methodology (RSM) based on yield. The use of the ICE method resulted in a 227.8% increase in yield of Tc-WS-NSP compared to the CE method. The Tc-WS-NSP-ICE had higher purity, lighter color, larger particle size, and higherζ-potential than Tc-WS-NSP-CE. Both of the samples contain the sugar arabinose, galactose, glucose, and mannose and exhibited comparative FTIR, 1H, and 13C NMR spectra. The Tc-WS-NSP-ICE had a semi-crystalline structure resulting in higher thermal stability and had a higher consistency index than Tc-WS-NSP-CE. Overall, the use of the ICE method provided a simple, efficient, and green alternative to CE for the extraction of Tc-WS-NSP.


Subject(s)
Chemical Fractionation/methods , Chemical Phenomena , Colocasia/chemistry , Freezing , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Water/chemistry , Particle Size , Polysaccharides/analysis , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...