Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Physiol ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454776

ABSTRACT

Gene therapy is a revolutionary technology in healthcare that provides novel therapeutic options and has immense potential in addressing genetic illnesses, malignancies, and viral infections. Nevertheless, other obstacles still need to be addressed regarding safety, ethical implications, and technological enhancement. Nanotechnology and gene therapy fields have shown significant promise in transforming medical treatments by improving accuracy, effectiveness, and personalization. This review assesses the possible uses of gene therapy, its obstacles, and future research areas, specifically emphasizing the creative combination of gene therapy and nanotechnology. Nanotechnology is essential for gene delivery as it allows for the development of nano-scale carriers, such as carbon quantum dots (CQDs), which may effectively transport therapeutic genes into specific cells. CQDs exhibit distinctive physicochemical characteristics such as small size, excellent stability, and minimal toxicity, which render them highly favorable for gene therapy applications. The objective of this study is to review and describe the current advancements in the utilization of CQDs for gene delivery. Additionally, it intends to assess existing research, explore novel applications, and identify future opportunities and obstacles. This study offers a thorough summary of the current state and future possibilities of using CQDs for gene delivery. Combining recent research findings highlights the potential of CQDs to revolutionize gene therapy and its delivery methods.

2.
Curr Pharm Biotechnol ; 24(12): 1554-1559, 2023.
Article in English | MEDLINE | ID: mdl-36733239

ABSTRACT

Colorectal cancer (CRC) is considered a lethal cancer all around the world, and its incidence has been reported to be increasing. Chemotherapeutic drugs commonly used for treating this cancer have shown some drawbacks, including toxicity to healthy cells and non-precise delivery. Thus, there is a necessity for discovering novel diagnostic and therapeutic options to increase the survival rate of CRC patients. Chitosan, as a natural polymer, has attracted a lot attention during the past years in different fields, including cancer. Studies have indicated that chitosan-based materials play various roles in prevention, diagnosis, and treatment of cancers. Chitosan nanoparticles (NPs) have been shown to serve as anti-cancer agents, which provide sustained drug release and targeted delivery of drugs to the tumor site. In this paper, we review available literature on the roles of chitosan in CRC. We discuss the applications of chitosan in designing drug delivery systems as well as anti-cancer activities of chitosan and involved signaling pathways.


Subject(s)
Antineoplastic Agents , Chitosan , Colorectal Neoplasms , Nanoparticles , Humans , Drug Delivery Systems , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Liberation , Colorectal Neoplasms/drug therapy , Drug Carriers
SELECTION OF CITATIONS
SEARCH DETAIL
...