Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 14(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37999036

ABSTRACT

In sub-Saharan Africa, sweetpotato weevils are the major pests of cultivated sweetpotato, causing estimated losses of between 60% and 100%, primarily during dry spells. The predominantly cryptic feeding behavior of Cylas spp. within their roots makes their control difficult, thus, host plant resistance is one of the most promising lines of protection against these pests. However, limited progress has been made in cultivar breeding for weevil resistance, partly due to the complex hexaploid genome of sweetpotato, which complicates conventional breeding, in addition to the limited number of genotypes with significant levels of resistance for use as sources of resistance. Pollen sterility, cross incompatibility, and poor seed set and germination in sweetpotato are also common challenges in improving weevil resistance. The accurate phenotyping of sweetpotato weevil resistance to enhance the efficiency of selection has been equally difficult. Genomics-assisted breeding, though in its infancy stages in sweetpotato, has a potential application in overcoming some of these barriers. However, it will require the development of more genomic infrastructure, particularly single-nucleotide polymorphism markers (SNPs) and robust next-generation sequencing platforms, together with relevant statistical procedures for analyses. With the recent advances in genomics, we anticipate that genomic breeding for sweetpotato weevil resistance will be expedited in the coming years. This review sheds light on Uganda's efforts, to date, to breed against the Cylas puncticollis (Boheman) and Cylas brunneus (Fabricius) species of African sweetpotato weevil.

2.
Euphytica ; 219(10): 110, 2023.
Article in English | MEDLINE | ID: mdl-37780031

ABSTRACT

Heterosis-exploiting breeding schemes are currently under consideration as a means of accelerating genetic gains in sweetpotato (Ipomoea batatas) breeding. This study was aimed at establishing heterotic gains, fitness costs and transgressive segregation associated with sweetpotato weevil (SPW) resistance in a partial diallel cross of sweetpotato. A total of 1896 clones were tested at two sites, for two seasons each in Uganda. Data on weevil severity (WED), weevil incidence (WI), storage root yield (SRY) and dry matter content (DM) were obtained. Best linear unbiased predictors (BLUPs) for each clone across environments were used to estimate heterotic gains and for regression analyses to establish relationships between key traits. In general, low mid-parent heterotic gains were detected with the highest favorable levels recorded for SRY (14.7%) and WED (- 7.9%). About 25% of the crosses exhibited desirable and significant mid-parent heterosis for weevil resistance. Over 16% of the clones displayed superior transgressive segregation, with the highest percentages recorded for SRY (21%) and WED (18%). A yield penalty of 10% was observed to be associated with SPW resistance whereas no decline in DM was detected in relation to the same. Chances of improving sweetpotato through exploiting heterosis in controlled crosses using parents of mostly similar background are somewhat minimal, as revealed by the low heterotic gains. The yield penalty detected due to SPW resistance suggests that a trade-off may be necessary between maximizing yields and developing weevil-resistant cultivars if the current needs for this crop are to be met in weevil-prone areas.

3.
Front Plant Sci ; 13: 956936, 2022.
Article in English | MEDLINE | ID: mdl-36160986

ABSTRACT

Efficient breeding and selection of superior genotypes requires a comprehensive understanding of the genetics of traits. This study was aimed at establishing the general combining ability (GCA), specific combining ability (SCA), and heritability of sweetpotato weevil (Cylas spp.) resistance, storage root yield, and dry matter content in a sweetpotato multi-parental breeding population. A population of 1,896 F1 clones obtained from an 8 × 8 North Carolina II design cross was evaluated with its parents in the field at two sweetpotato weevil hotspots in Uganda, using an augmented row-column design. Clone roots were further evaluated in three rounds of a no-choice feeding laboratory bioassay. Significant GCA effects for parents and SCA effects for families were observed for most traits and all variance components were highly significant (p ≤ 0.001). Narrow-sense heritability estimates for weevil severity, storage root yield, and dry matter content were 0.35, 0.36, and 0.45, respectively. Parental genotypes with superior GCA for weevil resistance included "Mugande," NASPOT 5, "Dimbuka-bukulula," and "Wagabolige." On the other hand, families that displayed the highest levels of resistance to weevils included "Wagabolige" × NASPOT 10 O, NASPOT 5 × "Dimbuka-bukulula," "Mugande" × "Dimbuka-bukulula," and NASPOT 11 × NASPOT 7. The moderate levels of narrow-sense heritability observed for the traits, coupled with the significant GCA and SCA effects, suggest that there is potential for their improvement through conventional breeding via hybridization and progeny selection and advancement. Although selection for weevil resistance may, to some extent, be challenging for breeders, efforts could be boosted through applying genomics-assisted breeding. Superior parents and families identified through this study could be deployed in further research involving the genetic improvement of these traits.

4.
Front Plant Sci ; 8: 1011, 2017.
Article in English | MEDLINE | ID: mdl-28659954

ABSTRACT

Resistance to sweetpotato weevils (Cylas spp.) has been identified in several sweetpotato (Ipomoea batatas) landraces from East Africa and shown to be conferred by hydroxycinnamic acids that occur on the surface of storage roots. The segregation of resistance in this crop is unknown and could be monitored using these chemical traits as markers for resistance in F1 offspring from breeding programs. For the first time in a segregating population, we quantified the plant chemicals that confer resistance and evaluated levels of insect colonization of the same progeny in field and laboratory studies. We used a bi-parental mapping population of 287 progenies from a cross between I. batatas 'New Kawogo,' a weevil resistant Ugandan landrace and I. batatas 'Beauregard' a North American orange-fleshed and weevil susceptible cultivar. The progenies were evaluated for resistance to sweetpotato weevil, Cylas puncticollis at three field locations that varied climatically and across two seasons to determine how environment and location influenced resistance. To augment our field open-choice resistance screening, each clone was also evaluated in a no choice experiment with weevils reared in the laboratory. Chemical analysis was used to determine whether differences in resistance to weevils were associated with plant compounds previously identified as conferring resistance. We established linkage between field and laboratory resistance to Cylas spp. and sweetpotato root chemistry. The data also showed that resistance in sweetpotato was mediated by root chemicals in most but not all cases. Multi-location trials especially from Serere data provided evidence that the hydroxycinnamic acid esters are produced constitutively within the plants in different clonal genotypes and that the ecological interaction of these chemicals in sweetpotato with weevils confers resistance. Our data suggest that these chemical traits are controlled quantitatively and that ultimately a knowledge of the genetics of resistance will facilitate management of these traits, enhance our understanding of the mechanistic basis of resistance and speed the development of new sweetpotato varieties with resistance to sweetpotato weevil.

SELECTION OF CITATIONS
SEARCH DETAIL
...