Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 122(27): 6995-7001, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29890076

ABSTRACT

The formation of permanent structures upon mild red laser illumination in transparent polydiene solutions is examined in the case of gem-dichlorocyclopropanated polybutadiene ( gDCC-PB) polymers bearing 15% functional units of the dichlorocyclopropane groups. The response was found to be distinct from the precursor PB. Whereas fiber-like patterns were clearly observed in both precursor and gDCC-PB solutions in cyclohexane, these were absent in the case of gDCC-PB/chloroform but were present in the precursor PB/chloroform solutions. The involved mechanical stresses were not sufficient for the gDCC activation to be detected by NMR spectroscopy. Remarkably, addition of even 10 wt % gDCC-PB into the latter solution sufficed to suppress the light-induced patterning. The importance of the chemical environment on the response to light irradiation was further checked and confirmed by use of other PB copolymers. Different diameter patterns and kinetics were observed. The strong solvent and comonomer mediated effect was reflected neither in solvency nor in optical polarizability differences of the polymers solvent couples.

2.
J Phys Chem B ; 121(29): 7180-7189, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28613878

ABSTRACT

When exposed to weak visible laser light, solutions of common polymers like poly(isoprene) and poly(butadiene) respond by local concentration variations, which in turn lead to refractive index changes. Various micropatterns have been recently reported, depending mostly on the solvent environment and the irradiation conditions. Here, we focused on the simpler case of single polymer-rich filaments and we employed phase contrast microscopy to systematically investigate the influence of laser illumination and material parameters on the kinetics of the optically induced local concentration increase in the polydiene solutions. The refractive index contrast of the formed filaments increased exponentially with the laser illumination time. The growth rate exhibited linear dependence on the laser power and increased with polymer chain length in semidilute solutions in good solvents. On the contrary, the kinetics of the formed filaments appeared to be rather insensitive to the polymer concentration. Albeit the origin of the peculiar light field-polymer concentration coupling remains yet elusive, the new phenomenology is considered necessary for the elucidation of its mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...