Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanobiotechnology ; 17(1): 5, 2019 01 19.
Article in English | MEDLINE | ID: mdl-30660190

ABSTRACT

The Editors have retracted this article [1] because Figs. 6a and 6c have been used in three other publications to represent scanning electron micrographs of different nanoparticles [2-4]. The data reported in this article are therefore unreliable. In addition, Fig. 3 was reproduced from [5] with retrospective permission and the credit line should read as follows: "Reprinted from Acta Biomaterialia, Volume 3, Zhang, J. and Misra, R.D.K., Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response, pp. 838-850, copyright (2007) with permission from Acta Materialia Inc. Authors Abolfazl Akbarzadeh, Maryam Anzaby, Soodabeh Davaran, Sang Woo Joo and Mohammad Samiei agree to this retraction. Authors Younes Hanifehpour and Hamid Tayefi Nasrabadi have not responded to any correspondence about this retraction.

2.
J Nanobiotechnology ; 10: 46, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23244711

ABSTRACT

BACKGROUND: The aim of present study was to develop the novel methods for chemical and physical modification of superparamagnetic iron oxide nanoparticles (SPIONs) with polymers via covalent bonding entrapment. These modified SPIONs were used for encapsulation of anticancer drug doxorubicin. METHOD: At first approach silane-grafted magnetic nanoparticles was prepared and used as a template for polymerization of the N-isopropylacrylamide (NIPAAm) and methacrylic acid (MAA) via radical polymerization. This temperature/pH-sensitive copolymer was used for preparation of DOX-loaded magnetic nanocomposites. At second approach Vinyltriethoxysilane-grafted magnetic nanoparticles were used as a template to polymerize PNIPAAm-MAA in 1, 4 dioxan and methylene-bis-acrylamide (BIS) was used as a cross-linking agent. Chemical composition and magnetic properties of Dox-loaded magnetic hydrogel nanocomposites were analyzed by FT-IR, XRD, and VSM. RESULTS: The results demonstrate the feasibility of drug encapsulation of the magnetic nanoparticles with NIPAAm-MAA copolymer via covalent bonding. The key factors for the successful prepardtion of magnetic nanocomposites were the structure of copolymer (linear or cross-linked), concentration of copolymer and concentration of drug. The influence of pH and temperature on the release profile of doxorubicin was examined. The in vitro cytotoxicity test (MTT assay) of both magnetic DOx-loaded nanoparticles was examined. The in vitro tests showed that these systems are no toxicity and are biocompatible. CONCLUSION: IC50 of DOx-loaded Fe3O4 nanoparticles on A549 lung cancer cell line showed that systems could be useful in treatment of lung cancer.


Subject(s)
Antineoplastic Agents/chemistry , Doxorubicin/chemistry , Drug Carriers/chemistry , Magnetite Nanoparticles/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Drug Carriers/chemical synthesis , Humans , Hydrogen-Ion Concentration , Magnetite Nanoparticles/administration & dosage , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...