Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Neurosurg ; : 1-12, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788240

ABSTRACT

OBJECTIVE: Insular gliomas pose a significant surgical challenge due to the complex surrounding functional and vascular anatomy. The authors report their experience using a novel framework for the treatment of insular gliomas with laser interstitial thermal therapy (LITT) and provide representative case examples emphasizing indications, rationale, and technical pearls. METHODS: A prospectively gathered institutional database was used to identify patients with newly diagnosed insular gliomas who underwent LITT between 2015 and 2023. The proposed framework of insular glioma management is guided by tumor size and extent of extra-insular tumor involvement. Patients with tumors localized to the insula (insula-only) were treated with single-session or staged LITT. Patients with insular tumors with frontotemporal involvement (insular+) were treated with insular LITT and standard frontotemporal resection of extra-insular tumor. Clinical and volumetric lesional characteristics were analyzed, with particular emphasis on extent of cytoreductive treatment and safety. RESULTS: Of the 261 patients treated at the authors' institution with LITT between 2015 and 2023, 33 LITT procedures were identified involving 22 unique patients with treatment-naive insular gliomas. Of the 22 patients, 12 had insular-only tumors and were treated with LITT alone, while 10 patients had insular+ lesions and were treated with LITT and resection. The median tumor volume for insular-only tumors was 13.4 cm3 (IQR 10.6, 26.3 cm3), with a median extent of treatment of 100% (IQR 92.1%, 100%). Insular+ lesions were significantly larger, with a median volume of 81.2 cm3 (IQR 51.9, 97 cm3) and median extent of treatment of 96.6% (IQR 93.7%, 100%). All patients with insular-only tumors were discharged the day after ablation, while insular+ patients had significantly longer hospital stays, with 50% staying more than 3 days. Overall, 8% of insular-only patients had permanent neurological deficits compared with 33% of insular+ patients. Two patients' tumors progressed during follow-up: one patient with WHO grade 4 astrocytoma and the other with diffuse glioma not otherwise specified. Patients with grade 4 tumors had the highest rate of permanent neurological deficit (43%) and a larger decline in postoperative Karnofsky Performance Status score (p = 0.046). CONCLUSIONS: The authors present their experience using a novel insular glioma treatment paradigm that incorporates LITT into the broader framework of insular glioma surgery. Their findings suggest that insular LITT is feasible and may allow for high rates of cytoreduction while potentially ameliorating the risks of conventional insular glioma surgery.

2.
Nutrients ; 13(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34836033

ABSTRACT

BACKGROUND: EPA and DHA n-3 FA play crucial roles in both neurological and cardiovascular health and high dietary intakes along with supplementation suggest potential neuroprotection and concussion recovery support. Rugby athletes have a high risk of repetitive sub-concussive head impacts which may lead to long-term neurological deficits, but there is a lack of research looking into n-3 FA status in rugby players. We examined the dietary n-3 FA intake through a FFQ and n-3 FA status by measuring the percentage of n-3 FA and O3I in elite Canadian Rugby 7s players to show distribution across O3I risk zones; high risk, <4%; intermediate risk, 4 to 8%; and low risk, >8%. METHODS: n-3 FA profile and dietary intake as per FFQ were collected at the beginning of the 2017-2018 Rugby 7s season in male (n = 19; 24.84 ± 2.32 years; 95.23 ± 6.93 kg) and female (n = 15; 23.45 ± 3.10 years; 71.21 ± 5.79 kg) athletes. RESULTS: O3I averaged 4.54% ± 1.77, with female athlete scores slightly higher, and higher O3I scores in supplemented athletes (4.82% vs. 3.94%, p = 0.183), with a greater proportion of non-supplemented athletes in the high-risk category (45.5% vs. 39.1%). Dietary intake in non-supplemented athletes did not meet daily dietary recommendations for ALA or EPA + DHA compared to supplemented athletes. CONCLUSIONS: Overall, despite supplementation, O3I score remained in the high-risk category in a proportion of athletes who met recommended n-3 FA dietary intakes, and non-supplemented athletes had a higher proportion of O3I scores in the high-risk category, suggesting that dietary intake alone may not be enough and athletes may require additional dietary and n-3 FA supplementation to reduce neurological and cardiovascular risk.


Subject(s)
Athletes/statistics & numerical data , Diet/statistics & numerical data , Dietary Supplements , Fatty Acids, Omega-3/analysis , Rugby , Canada , Diet Surveys , Eating , Female , Humans , Male , Nutritional Status , Recommended Dietary Allowances , Young Adult
3.
J Int Soc Sports Nutr ; 18(1): 65, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34579748

ABSTRACT

BACKGROUND: American-style football (ASF) athletes are at risk for cardiovascular disease (CVD) and exhibit elevated levels of serum neurofilament light (Nf-L), a biomarker of axonal injury that is associated with repetitive head impact exposure over the course of a season of competition. Supplementation with the w-3 fatty acid (FA) docosahexaenoic acid (DHA) attenuates serum Nf-L elevations and improves aspects of CVD, such as the omega-3 index (O3I). However, the effect of combining the w-3 FA eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA) with DHA on, specifically, serum Nf-L in ASF athletes is unknown. Therefore, this study assessed the effect of supplemental w-3 FA (EPA+DPA+DHA) on serum Nf-L, plasma w-3 FAs, the O3I, and surrogate markers of inflammation over the course of a season. METHODS: A multi-site, non-randomized design, utilizing two American football teams was employed. One team (n = 3 1) received supplementation with a highly bioavailablew-3 FA formulation (2000mg DHA, 560mg EPA, 320mg DPA, Mindset®, Struct Nutrition, Missoula, MT) during pre-season and throughout the regular season, while the second team served as the control (n = 35) and did not undergo supplementation. Blood was sampled at specific times throughout pre- and regular season coincident w ith changes in intensity, physical contact, and changes in the incidence and severity of head impacts. Group differences were determined via a mixed-model between-within subjects ANOVA. Effect sizes were calculated using Cohen's dfor all between-group differences. Significance was set a priori at p< .05. RESULTS: Compared to the control group, ASF athletes in the treatment group experienced large increases in plasma EPA (p < .001, d = 1.71) and DHA (p < .001, d = 2.10) which contributed to increases in the O3I (p < .001, d = 2.16) and the EPA:AA ratio (p = .001, d = 0.83) and a reduction in the w-6: w-3 ratio (p < .001, d = 1.80). w-3 FA supplementation attenuated elevations in Nf-L (p = .024). The control group experienced a significant increase in Nf-L compared to baseline at several measurement time points (T2, T3, and T4 [p range < .001 - .005, drange = 0.59-0.85]). CONCLUSIONS: These findings suggest a cardio- and neuroprotective effect of combined EPA+DPA+DHA w-3 FA supplementation in American-style football athletes. TRIAL REGISTRATION: This trial was registered with the ISRCTN registry ( ISRCTN90306741 ).


Subject(s)
Athletic Injuries/blood , Craniocerebral Trauma/blood , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Football/injuries , Athletes , Biomarkers/blood , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Fatty Acids, Omega-3/blood , Fatty Acids, Unsaturated/blood , Humans , Male
4.
Clin J Sport Med ; 31(3): 250-256, 2021 May 01.
Article in English | MEDLINE | ID: mdl-30839351

ABSTRACT

OBJECTIVE: To examine changes in blood biomarkers, serum neurofilament light (Nf-L), and plasma tau, as well as the relationship between blood biomarkers and symptom reports, in athletes with a sports-related concussion. DESIGN: Prospective cohort study. SETTING: Private community-based concussion clinic. PARTICIPANTS: Athletes aged 13 to 18 years old with a diagnosed sports-related concussion presenting to a concussion clinic within 7 days of injury and noninjured athletes with no history of concussion aged 13 to 23 years old. ASSESSMENT AND MAIN OUTCOME MEASURES: Injured athletes provided a blood sample at the initial clinical evaluation and again at least 6 months after injury. Noninjured athletes provided a single blood sample. All participants completed symptom reports during each visit. Statistical comparisons of biomarker concentrations and symptom reports were conducted. RESULTS: The mean rank for tau was significantly lower for concussed athletes compared with nonconcussed athletes. In contrast, the mean rank of Nf-L was higher for concussed athletes than for nonconcussed athletes, although the difference was nonsignificant. Plasma tau was significantly lower postinjury compared with 6 months after injury, whereas serum Nf-L was significantly higher postinjury. There was a weak but significant inverse relationship observed between tau and the number of symptoms reported, but no relationship was observed between Nf-L and the number of symptoms reported. CONCLUSIONS: These data indicate that in the days following a sports-related concussion, the blood biomarkers tau and Nf-L display contrasting patterns of change but may not be related to self-reported symptom scores.


Subject(s)
Athletic Injuries , Brain Concussion , Adolescent , Athletes , Athletic Injuries/diagnosis , Biomarkers/blood , Brain Concussion/diagnosis , Humans , Neuropsychological Tests , Prospective Studies , Sports , Young Adult
5.
Probiotics Antimicrob Proteins ; 12(4): 1330-1339, 2020 12.
Article in English | MEDLINE | ID: mdl-32358640

ABSTRACT

The fate of dietary protein in the gut is determined by microbial and host digestion and utilization. Fermentation of proteins generates bioactive molecules that have wide-ranging health effects on the host. The type of protein can affect amino acid absorption, with animal proteins generally being more efficiently absorbed compared with plant proteins. In contrast to animal proteins, most plant proteins, such as pea protein, are incomplete proteins. Pea protein is low in methionine and contains lower amounts of branched-chain amino acids (BCAAs), which play a crucial role in muscle health. We hypothesized that probiotic supplementation results in favorable changes in the gut microbiota, aiding the absorption of amino acids from plant proteins by the host. Fifteen physically active men (24.2 ± 5.0 years; 85.3 ± 12.9 kg; 178.0 ± 7.6 cm; 16.7 ± 5.8% body fat) co-ingested 20 g of pea protein with either AminoAlta™, a multi-strain probiotic (5 billion CFU L. paracasei LP-DG® (CNCM I-1572) plus 5 billion CFU L. paracasei LPC-S01 (DSM 26760), SOFAR S.p.A., Italy) or a placebo for 2 weeks in a randomized, double-blind, crossover design, separated by a 4-week washout period. Blood samples were taken at baseline and at 30-, 60-, 120-, and 180-min post-ingestion and analyzed for amino acid content. Probiotic administration significantly increased methionine, histidine, valine, leucine, isoleucine, tyrosine, total BCAA, and total EAA maximum concentrations (Cmax) and AUC without significantly changing the time to reach maximum concentrations. Probiotic supplementation can be an important nutritional strategy to improve post-prandial changes in blood amino acids and to overcome compositional shortcomings of plant proteins. ClinicalTrials.gov Identifier: ISRCTN38903788.


Subject(s)
Amino Acids/blood , Dietary Proteins/blood , Intestinal Absorption/drug effects , Lacticaseibacillus paracasei/physiology , Pea Proteins/blood , Probiotics/administration & dosage , Adult , Area Under Curve , Cross-Over Studies , Dietary Proteins/administration & dosage , Double-Blind Method , Gastrointestinal Microbiome/physiology , Humans , Intestinal Absorption/physiology , Male , Pea Proteins/administration & dosage
6.
J Neurosurg ; : 1-8, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29807487

ABSTRACT

OBJECTIVERepetitive subconcussive head trauma is a consequence of participation in contact sports and may be linked to neurodegenerative diseases. The degree of neurological injury caused by subconcussive head trauma is not easily detectible, and this injury does not induce readily identifiable clinical signs or symptoms. Recent advancements in immunoassays make possible the detection and quantification of blood biomarkers linked to head trauma. Identification of a blood biomarker that can identify the extent of neurological injury associated with subconcussive head trauma may provide an objective measure for informed decisions concerning cumulative exposure to subconcussive head trauma. The purpose of the current study was to examine changes in the blood biomarkers of subconcussive head trauma over the course of an American football season.METHODSThirty-five National Collegiate Athletic Association (NCAA) American football athletes underwent blood sampling throughout the course of a football season. Serial samples were obtained throughout the 2016 season, during which the number and magnitude of head impacts changed. Blood samples were analyzed for plasma concentrations of tau and serum concentrations of neurofilament light polypeptide (NF-L). Athletes were grouped based on their starter status, because athletes identified as starters are known to sustain a greater number of impacts. Between-group differences and time-course differences were assessed.RESULTSIn nonstarters, plasma concentrations of tau decreased over the course of the season, with lower values observed in starters; this resulted in a lower area under the curve (AUC) (starters: 416.78 ± 129.17 pg/ml/day; nonstarters: 520.84 ± 163.19 pg/ml/day; p = 0.050). Plasma concentrations of tau could not be used to discern between starters and nonstarters. In contrast, serum concentrations of NF-L increased throughout the season as head impacts accumulated, specifically in those athletes categorized as starters. The higher serum concentrations of NF-L observed in starters resulted in a larger AUC (starters: 1605.03 ± 655.09 pg/ml/day; nonstarters: 1067.29 ± 272.33 pg/ml/day; p = 0.007). The AUC of the receiver operating characteristic curve analyses displayed fair to modest accuracy to identify athletes who were starters with the use of serum NF-L following periods of repetitive impacts.CONCLUSIONSThe different patterns observed in serum NF-L and plasma tau concentrations provide preliminary evidence for the use of blood biomarkers to detect the neurological injury associated with repetitive subconcussive head trauma. Although further investigation is necessary, such findings might lay the foundation for the further development of an objective measure for the detection of neurological injury caused by subconcussive head trauma.

8.
Sports Med ; 48(Suppl 1): 39-52, 2018 03.
Article in English | MEDLINE | ID: mdl-29368186

ABSTRACT

Even in the presence of underreporting, sports-related concussions/mild traumatic brain injuries (mTBI) are on the rise. In the absence of proper diagnosis, an athlete may return to play prior to full recovery, increasing the risk of second-impact syndrome or protracted symptoms. Recent evidence has demonstrated that sub-concussive impacts, those sustained routinely in practice and competition, result in a quantifiable pathophysiological response and the accumulation of both concussive and sub-concussive impacts sustained over a lifetime of sports participation may lead to long-term neurological impairments and an increased risk of developing neurodegenerative diseases. The pathophysiological, neurometabolic, and neurochemical cascade that initiates subsequent to the injury is complex and involves multiple mechanisms. While pharmaceutical treatments may target one mechanism, specific nutrients and nutraceuticals have been discovered to impact several pathways, presenting a broader approach. Several studies have demonstrated the neuroprotective effect of nutritional supplementation in the treatment of mTBI. However, given that many concussions go unreported and sub-concussive impacts result in a pathophysiological response that, too, may contribute to long-term brain health, protection prior to impact is warranted. This review discusses the current literature regarding the role of nutritional supplements that, when provided before mTBI and traumatic brain injury, may provide neurological protection.


Subject(s)
Athletes , Brain Concussion , Craniocerebral Trauma , Dietary Supplements , Neuroprotective Agents , Animals , Athletic Injuries , Rats , Sports
9.
J Neurotrauma ; 34(23): 3295-3300, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28614998

ABSTRACT

American football athletes are routinely exposed to sub-concussive impacts over the course of the season. This study sought to examine the effect of a season of American football on plasma tau, a potential marker of axonal damage. Nineteen National Collegiate Athletic Association (NCAA) football athletes underwent serial blood sampling over the course of the 2014-2015 season at those times in which the number and magnitude of head impacts likely changed. Non-contact sport controls (NCAA men's swim athletes; n = 19) provided a single plasma sample for comparison. No significant differences were observed between control swim athletes and football athletes following a period of non-contact (p = 0.569) or a period of contact (p = 0.076). Football athletes categorized as starters (n = 11) had higher tau concentrations than non-starters (n = 8) following a period of non-contact (p = 0.039) and contact (p = 0.036), but not higher than swimmers (p = 1.000 and p = 1.000, respectively). No difference was noted over the course of the season in football athletes, irrespective of starter status. Despite routine head impacts common to the sport of American football, no changes were observed over the course of the season in football athletes, irrespective of starter status. Further, no difference was observed between football athletes and non-contact control swim athletes following a period of non-contact or contact. These data suggest that plasma tau is not sensitive enough to detect damage associated with repetitive sub-concussive impacts sustained by collegiate-level football athletes.


Subject(s)
Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/etiology , Football/injuries , tau Proteins/blood , Athletes , Humans , Male , United States
10.
Am J Sports Med ; 45(2): 474-479, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27789472

ABSTRACT

BACKGROUND: Vestibular and ocular motor impairments are routinely reported in patients with sports-related concussion (SRC) and may result in delayed return to play (RTP). The Vestibular/Ocular Motor Screening (VOMS) assessment has been shown to be consistent and sensitive in identifying concussion when used as part of a comprehensive examination. To what extent these impairments or symptoms are associated with length of recovery is unknown. PURPOSE: To examine whether symptom provocation or clinical abnormality in specific domains of the VOMS results in protracted recovery (time from SRC to commencement of RTP protocol). STUDY DESIGN: Cohort study (prognosis); Level of evidence, 2. METHODS: A retrospective chart review was conducted of 167 patients (69 girls, 98 boys; mean ± SD age, 15 ± 2 years [range, 11-19 years]) presenting with SRC in 2014. During the initial visit, VOMS was performed in which symptom provocation or clinical abnormality (eg, unsmooth eye movements) was documented by use of a dichotomous scale (0 = not present, 1 = present). The VOMS used in this clinic consisted of smooth pursuits (SMO_PUR), horizontal and vertical saccades (HOR_SAC and VER_SAC), horizontal and vertical vestibular ocular reflex (HOR_VOR and VER_VOR), near point of convergence (NPC), and accommodation (ACCOM). Domains were also categorized into ocular motor (SMO_PUR, HOR_SAC, VER_SAC, NPC, ACCOM) and vestibular (HOR_VOR, VER_VOR). Cox proportional hazard models were used to explore the relationship between the domains and recovery. Alpha was set at P ≤ .05. RESULTS: Symptom provocation and/or clinical abnormality in all domains except NPC ( P = .107) and ACCOM ( P = .234) delayed recovery (domain, hazard ratio [95% CI]: SMO_PUR, 0.65 [0.47-0.90], P = .009; HOR_SAC, 0.68 [0.50-0.94], P = .018; VER_SAC, 0.55 [0.40-0.75], P < .001; HOR_VOR, 0.68 [0.49-0.94], P = .018; VER_VOR, 0.60 [0.44-0.83], P = .002). The lowest crude hazard ratio was for ocular motor category (0.45 [0.32-0.63], P < .001). CONCLUSION: These data suggest that symptom provocation/clinical abnormality associated with all domains except NPC and ACCOM can delay recovery after SRC in youth and adolescents. Thus, the VOMS not only may augment current diagnostic tools but also may serve as a predictor of recovery time in patients with SRC. The findings of this study may lead to more effective prognosis of concussion in youth and adolescents.


Subject(s)
Brain Concussion/diagnosis , Neurologic Examination/methods , Ocular Motility Disorders/diagnosis , Vestibular Diseases/diagnosis , Adolescent , Athletic Injuries/diagnosis , Athletic Injuries/etiology , Brain Concussion/etiology , Child , Cross-Sectional Studies , Female , Humans , Male , Ocular Motility Disorders/etiology , Prognosis , Retrospective Studies , Vestibular Diseases/etiology , Young Adult
11.
Nutrients ; 8(10)2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27754427

ABSTRACT

Probiotics have immunomodulatory effects. However, little is known about the potential benefit of probiotics on the inflammation subsequent to strenuous exercise. In a double-blind, randomized, placebo controlled, crossover design separated by a 21-day washout, 15 healthy resistance-trained men ingested an encapsulated probiotic Streptococcus (S.) thermophilus FP4 and Bifidobacterium (B.) breve BR03 at 5 bn live cells (AFU) concentration each, or a placebo, daily for 3 weeks prior to muscle-damaging exercise (ClinicalTrials.gov NCT02520583). Isometric strength, muscle soreness, range of motion and girth, and blood interleukin-6 (IL-6) and creatine kinase (CK) concentrations were measured from pre- to 72 h post-exercise. Statistical analysis was via mixed models and magnitude-based inference to the standardized difference. Probiotic supplementation resulted in an overall decrease in circulating IL-6, which was sustained to 48 h post-exercise. In addition, probiotic supplementation likely enhanced isometric average peak torque production at 24 to 72 h into the recovery period following exercise (probiotic-placebo point effect ±90% CI: 24 h, 11% ± 7%; 48 h, 12% ± 18%; 72 h, 8% ± 8%). Probiotics also likely moderately increased resting arm angle at 24 h (2.4% ± 2.0%) and 48 h (1.9% ± 1.9%) following exercise, but effects on soreness and flexed arm angle and CK were unclear. These data suggest that dietary supplementation with probiotic strains S. thermophilus FP4 and B. breve BR03 attenuates performance decrements and muscle tension in the days following muscle-damaging exercise.


Subject(s)
Athletic Performance , Bifidobacterium breve , Myalgia/prevention & control , Probiotics , Range of Motion, Articular , Resistance Training , Streptococcus thermophilus , Adult , Dietary Supplements , Double-Blind Method , Humans , Male , Muscle, Skeletal , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...