Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(46): 43651-43663, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38027374

ABSTRACT

Naphthalene tetracarboxylic diimides (NDIs), possessing low-lying and tunable LUMO levels, are of wide interest for their aptitude to provide cost-effective, flexible, and environmentally stable n-type organic semiconductors through simple solution processing. NDI-based aromatic hydrazidimides are herein studied in relation to their chemical and environmental stability and as spin-coated stable thin films. In the case of the pentafluorinated residue, these were found to be crystalline, highly oriented, and molecularly flat (roughness = 0.3 nm), based on optical and atomic force microscopy, X-ray diffraction in specular and grazing incidence geometry, and X-ray reflectivity measurements. A new polymorph, previously undetected during the isolation of bulk powders or in their controlled thermal treatments, is found in the thin film and was metrically and structurally characterized from 2D GIWAXS patterns (monoclinic, P2/c, a = 17.50; b = 4.56; c = 14.24 Å; ß = 84.8°). This new thin-film phase, TF-F5, is formed no matter whether silicon, glass, or polymethylmethacrylate substrates are used, thus opening the way to the preparation of solution-grown flexible semiconducting films. The TF-F5 films exhibit a systematic and rigorous molecular alignment with both orientation and packing favorable to electron mobility (µ = 0.02 cm2 V-1 s-1). Structural and morphological differences are deemed responsible for the absence of measurable conductivity in thin films of polyfluorinated analogues bearing -CF3 residues on the hydrazidimide aromatic rings.

2.
Acta Crystallogr A Found Adv ; 79(Pt 6): 587-596, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37916738

ABSTRACT

The Debye scattering equation (DSE) [Debye (1915). Ann. Phys. 351, 809-823] is widely used for analyzing total scattering data of nanocrystalline materials in reciprocal space. In its modified form (MDSE) [Cervellino et al. (2010). J. Appl. Cryst. 43, 1543-1547], it includes contributions from uncorrelated thermal agitation terms and, for defective crystalline nanoparticles (NPs), average site-occupancy factors (s.o.f.'s). The s.o.f.'s were introduced heuristically and no theoretical demonstration was provided. This paper presents in detail such a demonstration, corrects a glitch present in the original MDSE, and discusses the s.o.f.'s physical significance. Three new MDSE expressions are given that refer to distinct defective NP ensembles characterized by: (i) vacant sites with uncorrelated constant site-occupancy probability; (ii) vacant sites with a fixed number of randomly distributed atoms; (iii) self-excluding (disordered) positional sites. For all these cases, beneficial aspects and shortcomings of introducing s.o.f.'s as free refinable parameters are demonstrated. The theoretical analysis is supported by numerical simulations performed by comparing the corrected MDSE profiles and the ones based on atomistic modeling of a large number of NPs, satisfying the structural conditions described in (i)-(iii).

3.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37756553

ABSTRACT

We propose a novel method alternative to the classical Dynamic Light Scattering (DLS) technique for performing particle sizing on diluted dispersions of nanosized particles. Differently from DLS, which works by determining the correlation function of the intensity scattered by the sample, our method does not require the use of a correlator because it exploits the behavior of the variance (VAR) of the scattered signal as a function of the sampling time Δt. By using a wide range of sampling times Δtmin ≪ τc ≪ Δtmax, it is possible to recover the correlation time τc of the scattered field and, in turn (by using the Stokes-Einstein relation), the hydrodynamic diameter of the particles. The new method is endowed with an analytical expression for the error bars associated with to the VAR data. Extensive computer simulations carried out on monodisperse and narrow polydisperse samples show that VAR and DLS techniques provide fairly similar performances. The same results were obtained on calibrated polystyrene spheres and fluorescent perovskite nanoparticles tested with different setups and detection schemes.

4.
Phys Rev E ; 106(2-1): 024116, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36109935

ABSTRACT

Thermal forces drive several nonequilibrium phenomena able to set a fluid in motion without pressure gradients. Although the most celebrated effect is thermophoresis, also known as Ludwig-Soret effect, probably the simplest example where thermal forces are at play is thermo-osmosis: The motion of a confined fluid exclusively due to the presence of a temperature gradient. We present a concise but complete derivation of the microscopic theory of thermo-osmosis based on linear response theory. This approach is applied to a simple fluid confined in a slab geometry, mimicking the flow through a pore in a membrane separating two fluid reservoirs at different temperatures. We consider both the case of an open channel, where the fluid can flow freely, and that of a closed channel, where mass transport is inhibited and a pressure drop sets in at the boundaries. Quantitative results require the evaluation of generalized transport coefficients, but a preliminary check on a specific prediction of the theory has been successfully performed via nonequilibrium molecular dynamics simulations.

5.
Nanomaterials (Basel) ; 12(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35808049

ABSTRACT

Light scattering and turbidimetry techniques are classical tools for characterizing the dynamics and structure of single nanoparticles or nanostructured networks. They work by analyzing, as a function of time (Dynamic Light Scattering, DLS) or angles (Static Light Scattering, SLS), the light scattered by a sample, or measuring, as a function of the wavelength, the intensity scattered over the entire solid angle when the sample is illuminated with white light (Multi Wavelength Turbidimetry, MWT). Light scattering methods probe different length scales, in the ranges of ~5−500 nm (DLS), or ~0.1−5 µm (Wide Angle SLS), or ~1−100 µm (Low Angle SLS), and some of them can be operated in a time-resolved mode, with the possibility of characterizing not only stationary, but also aggregating, polymerizing, or self-assembling samples. Thus, the combined use of these techniques represents a powerful approach for studying systems characterized by very different length scales. In this work, we will review some typical applications of these methods, ranging from the field of colloidal fractal aggregation to the polymerization of biologic networks made of randomly entangled nanosized fibers. We will also discuss the opportunity of combining together different scattering techniques, emphasizing the advantages of a global analysis with respect to single-methods data processing.

6.
Phys Rev Lett ; 123(2): 028002, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386498

ABSTRACT

Thermal gradients lead to macroscopic fluid motion if a confining surface is present along the gradient. This fundamental nonequilibrium effect, known as thermo-osmosis, is held responsible for particle thermophoresis in colloidal suspensions. A unified approach for thermo-osmosis in liquids and in gases is still lacking. Linear response theory is generalized to inhomogeneous systems, leading to an exact microscopic theory for the thermo-osmotic flow, showing that the effect originates from two independent physical mechanisms, playing different roles in the gas and liquid phases, reducing to known expressions in the appropriate limits.

7.
Soft Matter ; 13(30): 5150-5157, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28657625

ABSTRACT

We develop a simple model, in the spirit of the Asakura-Oosawa theory, able to describe the effects of surface roughness on the depletion potential. The resulting explicit expressions are easily computed, without free parameters, for a wide range of physically interesting conditions. Comparison with recent numerical simulations [M. Kamp et al., Langmuir, 2016, 32, 1233] shows an encouraging agreement and allows predicting the onset of colloidal aggregation in dilute suspensions of rough particles. Furthermore, the model proves to be suitable to investigate the role of the geometry of the roughness.

8.
Phys Rev E ; 94(5-1): 052113, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27967107

ABSTRACT

The effective interaction between two planar walls immersed in a fluid is investigated by use of density functional theory in the supercritical region of the phase diagram. A hard core Yukawa model of fluid is studied with special attention to the critical region. To achieve this goal a formulation of the weighted density approximation coupled with the hierarchical reference theory, able to deal with critical long wavelength fluctuations, is put forward and compared with other approaches. The effective interaction between the walls is seen to change character on lowering the temperature: The strong oscillations induced by layering of the molecules, typical of the depletion mechanism in hard core systems, are gradually smoothed and, close to the critical point, a long range attractive tail emerges leading to a scaling form which agrees with the expectations based on the critical Casimir effect. Strong corrections to scaling are seen to affect the results up to very small reduced temperatures. By use of the Derjaguin approximation, this investigation has natural implications for the aggregation of colloidal particles in critical solvents.

SELECTION OF CITATIONS
SEARCH DETAIL
...