Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Jpn J Infect Dis ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945856

ABSTRACT

Persistent inflammation in chronic HIV infection may affect immune responses against SARS-CoV-2 infection. Plasma levels of multiple proinflammatory cytokines during acute SARS-CoV-2 infection were assessed in people with HIV (PWH) with effective cART. There were no significant differences in any of the tested cytokines between COVID-19 severity in PWH, while most of them were significantly higher in individuals with severe disease in HIV-uninfected individuals, suggesting that excess cytokines release by hyper-inflammatory responses does not occur in severe COVID-19 with HIV infection. The strong associations between the cytokines observed in HIV-uninfected individuals, especially between IFN-α/TNF-α and other cytokines, were lost in PWH. The steady state plasma levels of IP-10, ICAM-1, and CD62E were significantly higher in PWH, indicating that PWH are in an enhanced inflammatory state. Loss of the several inter-cytokine correlations were observed in in vitro LPS stimuli-driven cytokines production in PWH. These data suggest that inflammatory responses during SARS-CoV-2 infection in PWH are distinct from those in HIV-uninfected individuals, partially due to the underlying inflammatory state and/or impairment of innate immune cells.

2.
Microbiol Spectr ; 11(4): e0214323, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37428088

ABSTRACT

T cell immunity is crucial for long-term immunological memory, but the profile of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory T cells in individuals who recovered from COVID-19 (COVID-19-convalescent individuals) is not sufficiently assessed. In this study, the breadth and magnitude of SARS-CoV-2-specific T cell responses were determined in COVID-19-convalescent individuals in Japan. Memory T cells against SARS-CoV-2 were detected in all convalescent individuals, and those with more severe disease exhibited a broader T cell response relative to cases with mild symptoms. Comprehensive screening of T cell responses at the peptide level was conducted for spike (S) and nucleocapsid (N) proteins, and regions frequently targeted by T cells were identified. Multiple regions in S and N proteins were targeted by memory T cells, with median numbers of target regions of 13 and 4, respectively. A maximum of 47 regions were recognized by memory T cells for an individual. These data indicate that SARS-CoV-2-convalescent individuals maintain a substantial breadth of memory T cells for at least several months following infection. Broader SARS-CoV-2-specific CD4+ T cell responses, relative to CD8+ T cell responses, were observed for the S but not the N protein, suggesting that antigen presentation is different between viral proteins. The binding affinity of predicted CD8+ T cell epitopes to HLA class I molecules in these regions was preserved for the Delta variant and at 94 to 96% for SARS-CoV-2 Omicron subvariants, suggesting that the amino acid changes in these variants do not have a major impact on antigen presentation to SARS-CoV-2-specific CD8+ T cells. IMPORTANCE RNA viruses, including SARS-CoV-2, evade host immune responses through mutations. As broader T cell responses against multiple viral proteins could minimize the impact of each single amino acid mutation, the breadth of memory T cells would be one essential parameter for effective protection. In this study, breadth of memory T cells to S and N proteins was assessed in COVID-19-convalescent individuals. While broad T cell responses were induced against both proteins, the ratio of N to S proteins for breadth of T cell responses was significantly higher in milder cases. The breadth of CD4+ and CD8+ T cell responses was also significantly different between S and N proteins, suggesting different contributions of N and S protein-specific T cells for COVID-19 control. Most CD8+ T cell epitopes in the immunodominant regions maintained their HLA binding to SARS-CoV-2 Omicron subvariants. Our study provides insights into understanding the protective efficacy of SARS-CoV-2-specific memory T cells against reinfection.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Viral Proteins
3.
HLA ; 98(1): 37-42, 2021 07.
Article in English | MEDLINE | ID: mdl-33734601

ABSTRACT

HLA-A, -C, -B, and -DRB1 genotypes were analyzed in 178 Japanese COVID-19 patients to investigate the association of HLA with severe COVID-19. Analysis of 32 common HLA alleles at four loci revealed a significant association between HLA-DRB1*09:01 and severe COVID-19 (odds ratio [OR], 3.62; 95% CI, 1.57-8.35; p = 0.00251 [permutation p value = 0.0418]) when age, sex, and other common HLA alleles at the DRB1 locus were adjusted. The DRB1*09:01 allele was more significantly associated with risk for severe COVID-19 compared to preexisting medical conditions such as hypertension, diabetes, and cardiovascular diseases. These results indicate a potential role for HLA in predisposition to severe COVID-19.


Subject(s)
COVID-19 , HLA-DRB1 Chains , Alleles , COVID-19/diagnosis , COVID-19/genetics , Gene Frequency , Genetic Predisposition to Disease , Genotype , HLA-DRB1 Chains/genetics , Humans
4.
EBioMedicine ; 59: 102945, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32827942

ABSTRACT

BACKGROUND: A comprehensive understanding of host factors modulated by the antiviral cytokine interferon-α (IFNα) is imperative for harnessing its beneficial effects while avoiding its detrimental side-effects during HIV infection. Cytokines modulate host glycosylation which plays a critical role in mediating immunological functions. However, the impact of IFNα on host glycosylation has never been characterized. METHODS: We assessed the impact of pegylated IFNα2a on IgG glycome, as well as CD8+ T and NK cell-surface glycomes, of 18 HIV-infected individuals on suppressive antiretroviral therapy. We linked these glycomic signatures to changes in inflammation, CD8+ T and NK cell phenotypes, and HIV DNA. FINDINGS: We identified significant interactions that support a model in which a) IFNα increases the proportion of pro-inflammatory, bisecting GlcNAc glycans (known to enhance FcγR binding) within the IgG glycome, which in turn b) increases inflammation, which c) leads to poor CD8+ T cell phenotypes and poor IFNα-mediated reduction of HIV DNA. Examining cell-surface glycomes, IFNα increases levels of the immunosuppressive GalNAc-containing glycans (T/Tn antigens) on CD8+ T cells. This induction is associated with lower HIV-gag-specific CD8+ T cell functions. Last, IFNα increases levels of fucose on NK cells. This induction is associated with higher NK functions upon K562 stimulation. INTERPRETATION: IFNα causes host glycomic alterations that are known to modulate immunological responses. These alterations are associated with both detrimental and beneficial consequences of IFNα. Manipulating host glycomic interactions may represent a strategy for enhancing the positive effects of IFNα while avoiding its detrimental side-effects. FUNDING: NIH grants R21AI143385, U01AI110434.


Subject(s)
Antiviral Agents/pharmacology , HIV Infections/metabolism , HIV Infections/virology , HIV-1/drug effects , Interferon-alpha/pharmacology , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Glycosylation/drug effects , HIV Infections/drug therapy , HIV Infections/immunology , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Inflammation Mediators/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Count , Polysaccharides/metabolism
5.
Mucosal Immunol ; 13(5): 753-766, 2020 09.
Article in English | MEDLINE | ID: mdl-32152415

ABSTRACT

An emerging paradigm suggests that gut glycosylation is a key force in maintaining the homeostatic relationship between the gut and its microbiota. Nevertheless, it is unclear how gut glycosylation contributes to the HIV-associated microbial translocation and inflammation that persist despite viral suppression and contribute to the development of several comorbidities. We examined terminal ileum, right colon, and sigmoid colon biopsies from HIV-infected virally-suppressed individuals and found that gut glycomic patterns are associated with distinct microbial compositions and differential levels of chronic inflammation and HIV persistence. In particular, high levels of the pro-inflammatory hypo-sialylated T-antigen glycans and low levels of the anti-inflammatory fucosylated glycans were associated with higher abundance of glycan-degrading microbial species (in particular, Bacteroides vulgatus), a less diverse microbiome, higher levels of inflammation, and higher levels of ileum-associated HIV DNA. These findings are linked to the activation of the inflammasome-mediating eIF2 signaling pathway. Our study thus provides the first proof-of-concept evidence that a previously unappreciated factor, gut glycosylation, is a force that may impact the vicious cycle between HIV infection, microbial translocation, and chronic inflammation.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Gastrointestinal Microbiome , HIV Infections/metabolism , Inflammasomes/metabolism , Signal Transduction , Antiretroviral Therapy, Highly Active , Biodiversity , Colon, Sigmoid/immunology , Colon, Sigmoid/metabolism , Colon, Sigmoid/microbiology , Dysbiosis , Epitopes, T-Lymphocyte/immunology , Gastrointestinal Microbiome/immunology , Glycosylation , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , Humans , Immunocompromised Host , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Metagenome , Metagenomics/methods , Protein Processing, Post-Translational , Viral Load
6.
AIDS ; 34(5): 681-686, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31972605

ABSTRACT

OBJECTIVE: HIV cure research urgently needs to identify pre-analytic treatment interruption (ATI) biomarkers of time-to-viral-rebound and viral setpoint to mitigate the risk of ATI and accelerate development of a cure. We previously reported that galactosylated IgG glycans, G2, negatively correlate with cell-associated HIV DNA and RNA during antiretroviral therapy (ART). We hypothesized that this and other plasma glycomic traits can predict time-to-viral-rebound and viral setpoint upon ART cessation. DESIGN: We profiled the circulating glycomes (plasma and bulk IgG) of two geographically distinct cohorts: Philadelphia Cohort - 24 HIV-infected, ART-suppressed individuals who had participated in an open-ended ATI study without concurrent immunomodulatory agents. Johannesburg Cohort - 23 HIV-infected, ART-suppressed individuals who had participated in a 2-week ATI. METHODS: Capillary electrophoresis and lectin microarray were used for glycomic analyses. Cox proportional-hazards model and log-rank test were used for statistical analyses. RESULTS: Higher pre-ATI levels of the IgG glycan, G2, were significantly associated with a longer time-to-viral-rebound (hazard ratio = 0.12, P = 0.05). In addition to G2, we identified several predictive glycomic traits in plasma, for example, levels of FA2BG1, a non-sialylated, core-fucosylated glycan, associated with a longer time-to-viral-rebound (hazard ratio = 0.023, P = 0.05), whereas FA2G2S1, a sialylated glycan, associated with a shorter time-to-viral-rebound (hazard ratio = 24.1, P = 0.028). Additionally, pre-ATI plasma glycomic signatures associated with a lower viral setpoint, for example, T-antigen (Galß1-3GalNAc) (r = 0.75, P = 0.0007), or a higher viral setpoint, for example, polylactosamine (r = -0.58, P = 0.01). These results were initially validated in the Johannesburg Cohort. CONCLUSION: We describe first-in-class, non-invasive, plasma and IgG glycomic biomarkers that inform time-to-viral-rebound and viral setpoint in two geographically distinct cohorts.


Subject(s)
Anti-HIV Agents/therapeutic use , Antiretroviral Therapy, Highly Active , Glycomics , HIV Infections/drug therapy , HIV-1/physiology , Biomarkers , HIV Infections/blood , HIV-1/genetics , Humans , RNA, Viral/blood , South Africa , Viral Load/drug effects , Virus Replication
7.
Int J Mol Sci ; 20(20)2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31640124

ABSTRACT

Zika virus (ZIKV) is a global public health issue due to its association with severe developmental disorders in infants and neurological disorders in adults. ZIKV uses glycosylation of its envelope (E) protein to interact with host cell receptors to facilitate entry; these interactions could also be important for designing therapeutics and vaccines. Due to a lack of proper information about Asn-linked (N-glycans) on ZIKV E, we analyzed ZIKV E of various strains derived from different cells. We found ZIKV E proteins being extensively modified with oligomannose, hybrid and complex N-glycans of a highly heterogeneous nature. Host cell surface glycans correlated strongly with the glycomic features of ZIKV E. Mechanistically, we observed that ZIKV N-glycans might play a role in viral pathogenesis, as mannose-specific C-type lectins DC-SIGN and L-SIGN mediate host cell entry of ZIKV. Our findings represent the first detailed mapping of N-glycans on ZIKV E of various strains and their functional significance.


Subject(s)
Viral Envelope Proteins/chemistry , Zika Virus Infection/virology , Zika Virus/physiology , Zika Virus/pathogenicity , Animals , Chlorocebus aethiops , Glycosylation , Host Microbial Interactions , Humans , Oligosaccharides/metabolism , Polysaccharides/metabolism , THP-1 Cells , Vero Cells , Virus Internalization , Zika Virus/metabolism
8.
J Leukoc Biol ; 104(3): 461-471, 2018 09.
Article in English | MEDLINE | ID: mdl-29633346

ABSTRACT

Global antibody glycosylation is dynamic and plays critical roles in shaping different immunological outcomes and direct antibody functionality during HIV infection. However, the relevance of global antibody or plasma glycosylation patterns to HIV persistence after antiretroviral therapy (ART) has not been characterized. First, we compared glycomes of total plasma and isolated immunoglobulin G (IgG) from HIV+ ART-suppressed, HIV+ viremic, and HIV-negative individuals. Second, in ART-suppressed individuals, we examined the associations between glycomes and (1) levels of cell-associated HIV DNA and RNA in PBMCs and isolated CD4+ T cells, (2) CD4 count and CD4%, and (3) expression of CD4+ T-cell activation markers. HIV infection is associated with persistent alterations in the IgG glycome including decreased levels of disialylated glycans, which is associated with a lower anti-inflammatory activity, and increased levels of fucosylated glycans, which is associated with lower antibody-dependent cell-mediated cytotoxicity (ADCC). We also show that levels of certain mono- and digalactosylated nonfucosylated glycomic traits (A2G1, A2G2, and A2BG2), which have been reported to be associated with higher ADCC and higher anti-inflammatory activities, exhibit significant negative correlations with levels of cell-associated total HIV DNA and HIV RNA in ART-suppressed individuals. Finally, levels of certain circulating anti-inflammatory glycans are associated with higher levels of CD4 T cells and lower levels of T-cell activation. Our findings represent the first proof-of-concept evidence that glycomic alterations, known to be associated with differential states of inflammation and ADCC activities, are also associated with levels of HIV persistence in the setting of ART suppression.


Subject(s)
Anti-HIV Agents/therapeutic use , Galactose/metabolism , HIV Infections/drug therapy , HIV Infections/metabolism , Immunoglobulin G/metabolism , Adult , CD4-Positive T-Lymphocytes , Humans , Male , Plasma/metabolism , Viral Load/drug effects , Viremia/drug therapy , Viremia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...