Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 418: 189-204, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31487541

ABSTRACT

JLX001, a novel compound with similar structure with cyclovirobuxine D (CVB-D), has been proved to exert therapeutical effects on permanent focal cerebral ischemia. However, the protective effects of JLX001 on cerebral ischemia/reperfusion (I/R) injury and its anti-apoptotic effects have not been reported. We investigated the efficacy of JLX001 in two pharmacodynamic tests (pre-treatment test and post-treatment) with rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). The pharmacodynamic tests demonstrated that JLX001 ameliorated I/R injury by reducing infarct sizes and brain edema. The results of Morris water maze, neurological scores, cylinder test and posture reflex test implied that JLX001 improved the learning, memory and motor ability after MCAO/R in the long term. Anti-apoptotic effects of JLX001 and its regulation of cytosolic c-Jun N-terminal Kinases (JNKs) signal pathway were confirmed in vivo by co-immunofluorescence staining and western immunoblotting. Furthermore, primary cortical neuron cultures were prepared and exposed to oxygen glucose deprivation/reoxygenation (OGD/R) for in vitro studies. Cytotoxicity test and mitochondrial membrane potential (MMP) test showed that JLX001 enhanced cell survival rate and maintained MMP. Flow cytometry and TdT-mediated dUTP-X nick end labeling (TUNEL) staining demonstrated the anti-apoptotic effects of JLX001 in vitro. Likewise, JLX001 regulated JNK signal pathway in vivo, which was also confirmed by western immunoblotting. Collectively, this study presents the first evidence that JLX001 exerted protective effects against I/R injury by reducing neuronal apoptosis via down-regulating JNK signaling pathway.


Subject(s)
Apoptosis/drug effects , MAP Kinase Signaling System/drug effects , Reperfusion Injury/drug therapy , Triterpenes/pharmacology , Animals , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cell Survival/drug effects , Down-Regulation/drug effects , Male , Neuroprotective Agents/pharmacology , Reperfusion Injury/metabolism , Signal Transduction/drug effects
2.
Brain Res Bull ; 153: 162-170, 2019 11.
Article in English | MEDLINE | ID: mdl-31472184

ABSTRACT

(3ß,5α,16α,20S)-4,4,14-trimethyl-3,20-bis(methylamino)-9,19-cyclopregnan-16-ol-dihydrochloride (JLX-001), a structural analogue of cyclovirobuxine D (CVB-D), is a novel compound from synthesis. This study aims to confirm the therapeutic effects of JLX001 on ischemic stroke (IS) and research its induction of autophagy function via 5'-AMP-activated protein kinase (AMPK)-Human Serine/threonine-protein kinase (ULK1) signaling pathway activation. The therapeutic effects of JLX001 were evaluated by infarct sizes, brain edema, neurological scores and proportion of apoptotic neurons in Sprague-Dawley (SD) rats with middle cerebral artery occlusion/reperfusion (MCAO/R). The number of autophagosomes was obtained by transmission electron microscopy. The expression of LC3-II was measured by immunofluorescence. p-AMPK and activated ULK1 were detected by western blots. Results showed that JLX001 treatment markedly alleviated cerebral infarcts, edema, neurological scores and proportion of apoptotic neurons in MCAO/R rats. The number of autophagosomes was increased, accompanying with the increased expressions of LC3-II, p-AMPK and ULK1. In summary, JLX001 attenuates cerebral ischemia injury and the underlying mechanisms may relate to inducing autophagy via AMPK-ULK1 signaling pathway activation.


Subject(s)
Autophagy/drug effects , Brain Ischemia/drug therapy , Triterpenes/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Autophagy/physiology , Autophagy-Related Protein-1 Homolog/metabolism , Brain Edema , Infarction, Middle Cerebral Artery , Male , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Stroke/drug therapy , TOR Serine-Threonine Kinases/metabolism , Triterpenes/therapeutic use
3.
RSC Adv ; 9(31): 17591, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-35532405

ABSTRACT

[This corrects the article DOI: 10.1039/C7RA08879E.].

4.
J Mol Neurosci ; 66(3): 342-355, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30276612

ABSTRACT

Ischemic stroke is one of the leading health issues and the major cause of permanent disability in adults worldwide. Energy depletion and hypoxia occurring after ischemic stroke result in cell death, which activates resident glia cells and promotes the peripheral immune cells breaching into brain performing various functions even contradictory effects. The infiltration of immune cells may mediate neuron apoptosis and escalate ischemic damage, while it enhances neuron repair, differentiation, and neuroregeneration. The central nervous system (CNS) is immune-privileged site as it is separated from the peripheral immune system by the blood-brain barrier (BBB). Pathologically, the diapedesis of peripheral immune cells to CNS is controlled by BBB and regulated by immune cells/endothelial interactions. As immune responses play a key role in modulating the progression of ischemic injury development, understanding the characteristics and the contribution on regulating inflammatory responses of glia cells and peripheral immune cells may provide novel approaches for potential therapies. This review summarizes the multistep process of periphery immune cell extravasation into brain parenchyma during immunosurveillance and chronic inflammation after ischemic stroke onset. Furthermore, the review highlights promising target intervention, which may promote the development of future therapeutics for ischemic stroke.


Subject(s)
Brain Ischemia/immunology , Lymphocytes/immunology , Neuroglia/immunology , Stroke/immunology , Animals , Blood-Brain Barrier/metabolism , Cell Movement , Humans
5.
Biomed Pharmacother ; 106: 805-812, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29990874

ABSTRACT

(3ß,5α,16α,20S)-4,4,14-trimethyl-3,20-bis(methylamino)-9,19-cyclopregnan-16-ol-dihydrochloride (JLX001), a derivative of cyclovirobuxine D (CVB-D), is a novel compound from synthesis. This study aims to confirm the therapeutic effect of JLX001 on cerebral ischemia and researchits antiplatelet and antithrombosis activities via thromboxane (TXA2)/phospholipase C-ß-3(PLCß3)/protein kinase C (PKC) pathway suppression. The therapeutic effects of JLX001 was evaluated by infarct sizes, brain edema and neurological scores in Sprague-Dawley (SD) rats with middle cerebral artery occlusion (MCAO). Brain TXA2 and prostacyclin (PGI2) were measured by enzyme-linked immunosorbentassay (ELISA). P-PLCß3and activated PKC were detected by immunohistochemical method. Adenosine diphosphate (ADP) or 9, 11-dieoxy-11α, 9α-epoxymethanoeprostaglandin F2α (U46619) was used as platelet agonist in the in vivo and in vitro platelet aggregation experiments. Clotting time and bleeding time were determined. Besides, two whole-animal experiments including arteriovenous shunt thrombosis and pulmonary thromboembolism model were conducted. Results showed that JLX001 treatment markedly alleviated cerebral infarcts, edema, and neurological scores in permanent middle cerebral artery occlusion (pMCAO) rats. Brain TXA2 level, p-PLCß3and activated PKC were decreased, while PGI2level had no significant change. Besides, JLX001 inhibited platelet aggregation induced by ADP or U46619 and exhibited anti-coagulation effects with a minor bleeding risk. In the two whole-animal experiments, JLX001 inhibited thrombus formation. In summary, JLX001 attenuates cerebral ischemia injury and the underlying mechanisms relate to inhibiting platelet activation and thrombus formation via TXA2/PLCß3/PKC pathway suppression.


Subject(s)
Blood Coagulation/drug effects , Brain/drug effects , Infarction, Middle Cerebral Artery/prevention & control , Intracranial Thrombosis/prevention & control , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Triterpenes/pharmacology , Animals , Aspirin/pharmacology , Behavior, Animal/drug effects , Brain/enzymology , Brain/pathology , Brain/physiopathology , Brain Edema/blood , Brain Edema/pathology , Brain Edema/prevention & control , Disease Models, Animal , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/pharmacology , Epoprostenol/metabolism , Female , Infarction, Middle Cerebral Artery/blood , Infarction, Middle Cerebral Artery/enzymology , Infarction, Middle Cerebral Artery/pathology , Intracranial Thrombosis/blood , Intracranial Thrombosis/enzymology , Intracranial Thrombosis/pathology , Male , Mice, Inbred ICR , Phospholipase C beta/metabolism , Platelet Aggregation Inhibitors/therapeutic use , Protein Kinase C/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Thromboxane A2/metabolism , Triterpenes/therapeutic use
6.
Life Sci ; 190: 68-77, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28964813

ABSTRACT

Neuropathic pain is maladaptive pain caused by injury or dysfunction in peripheral and central nervous system, and remains a worldwide thorny problem leading to decreases in physical and mental quality of people's life. Currently, drug therapy is the main treatment regimen for resolving pain, while effective drugs are still unmet in medical need, and commonly used drugs such as anticonvulsants and antidepressants often make patients experience adverse drug reactions like dizziness, somnolence, severe headache, and high blood pressure. Thus, in this review we overview the anatomical physiology, underlying mechanisms of neuropathic pain to provide a better understanding in the initiation, development, maintenance, and modulation of this pervasive disease, and inspire research in the unclear mechanisms as well as potential targets. Furthermore, we summarized the existing drug therapies and new compounds that have shown antalgic effects in laboratory studies to be helpful for rational regimens in clinical treatment and promotion in novel drug discovery.


Subject(s)
Analgesics/therapeutic use , Drug Design , Neuralgia/drug therapy , Analgesics/adverse effects , Analgesics/pharmacology , Animals , Anticonvulsants/adverse effects , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Antidepressive Agents/adverse effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Drug Discovery/methods , Humans , Neuralgia/physiopathology , Quality of Life
7.
Eur J Pharmacol ; 810: 112-119, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28629736

ABSTRACT

1-(5-(1H-indol-5-yl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl)-N-methylmethanamine (KFP-H008),a novel and potent potassium-competitive acid blocker for the treatment of acid secretion related diseases, has not been reported previously. In this study, we demonstrated that KFP-H008 inhibits basal acid secretion, 2-deoxy-D-glucose- (2DG-) stimulated gastric acid secretion in rats. KFP-H008 blocked histamine-stimulated acid secretion in rats and heidenhain pouch dogs and reversed acid output in isolated gastric perfusion under histamine stimulation. In all the animal experiments, KFP-H008 exerted a more effective, potent and longer-lasting inhibitory action in comparison with lansoprazole, a proton pump inhibitor (PPI) commonly used in clinic. KFP-H008 inhibited H+-K+-ATPase activity both at pH 6.5 and pH 7.5, and was unaffected by pH. The inhibitory action was reversible and was achieved in a K+-competitive manner. Furthermore, KFP-H008 did not affect Na+-K+-ATPase activity, thus exhibiting high selectivity, which is different from PPIs. In all, KFP-H008, a novel potassium-competitive acid blocker, may provide new option for the patients with acid-related diseases and provide longer-lasting inhibitory action than drugs commonly used in clinical treatment.


Subject(s)
Gastric Acid/metabolism , H(+)-K(+)-Exchanging ATPase/metabolism , Indoles/pharmacology , Proton Pump Inhibitors/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Animals , Histamine/pharmacology , Male , Potassium/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...