Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Adv ; 73: 108372, 2024.
Article in English | MEDLINE | ID: mdl-38714276

ABSTRACT

Anaerobic digestion (AD) is an effective and applicable technology for treating organic wastes to recover bioenergy, but it is limited by various drawbacks, such as long start-up time for establishing a stable process, the toxicity of accumulated volatile fatty acids and ammonia nitrogen to methanogens resulting in extremely low biogas productivities, and a large amount of impurities in biogas for upgrading thereafter with high cost. Microbial electrolysis cell (MEC) is a device developed for electrosynthesis from organic wastes by electroactive microorganisms, but MEC alone is not practical for production at large scales. When AD is integrated with MEC, not only can biogas production be enhanced substantially, but also upgrading of the biogas product performed in situ. In this critical review, the state-of-the-art progress in developing AD-MEC systems is commented, and fundamentals underlying methanogenesis and bioelectrochemical reactions, technological innovations with electrode materials and configurations, designs and applications of AD-MEC systems, and strategies for their enhancement, such as driving the MEC device by electricity that is generated by burning the biogas to improve their energy efficiencies, are specifically addressed. Moreover, perspectives and challenges for the scale up of AD-MEC systems are highlighted for in-depth studies in the future to further improve their performance.


Subject(s)
Bioelectric Energy Sources , Biofuels , Electrolysis , Anaerobiosis , Bioelectric Energy Sources/microbiology , Bioreactors , Methane/metabolism
2.
Bioresour Technol ; 385: 129375, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37352987

ABSTRACT

Biorefinery can be promoted by building accurate machine learning models. This work proposed a strategy to enhance model's generalization ability and overcome insufficient data conditions for mixed sugar fermentation simulation. Multiple inputs single output models, using initial glucose, initial xylose, and time together as inputs, have higher generalization ability than single input single output models with time as sole input in predicting glucose, xylose, ethanol, or biomass separately. Multiple inputs multiple outputs models, integrating outputs, enhanced model accuracy and resulted in an average R2 at 0.99. To overcome data insufficiency conditions, consensus yeast (CY) model, through consolidating data from 4 yeasts, obtained R2 at 0.90. By adjusting the pretrained CY model, the model can save more than 50% data and get R2 at 0.95 and 0.93 for yeast and bacterial fermentation simulation. The strategy can expand the application range and save costs of data curation for ANN models.


Subject(s)
Saccharomyces cerevisiae , Xylose , Fermentation , Glucose , Machine Learning
3.
Bioprocess Biosyst Eng ; 44(6): 1201-1214, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33591430

ABSTRACT

The anaerobic digestion performance correlates with the functional microbial community. Mesophilic and thermophilic digestions of vegetable waste were conducted, and dynamics of the microbial community were investigated. The mesophilic and thermophilic collapsed stages occurred at organic loading rates of 1.5 and 2.0 g VS/(L d) due to the accumulation of volatile fatty acids with final concentrations of 2276 and 6476 mg/L, respectively. A high concentration of volatile fatty acids caused the severe inhibition of methanogens, which finally led to the imbalance between acetogenesis and methanogenesis. The mesophilic digestion exhibited a higher microbial diversity and richness than the thermophilic digestion. Syntrophic acetate-oxidizing coupled with hydrogenotrophic methanogenesis was the dominant pathway in the thermophilic stable system, and acetoclastic methanogenesis in the mesophilic stable system. The dominant acidogens, syntrophus, and methanogens were unclassified_f__Anaerolineaceae (8.68%), Candidatus_Cloacamonas (19.70%), Methanosaeta (6.10%), and Methanosarcina (4.08%) in the mesophilic stable stage, and Anaerobaculum (12.59%), Syntrophaceticus (4.84%), Methanosarcina (30.58%), and Methanothermobacter (3.17%) in thermophilic stable stage. Spirochaetae and Thermotogae phyla were the characteristic microorganisms in the mesophilic and thermophilic collapsed stages, respectively. These findings provided valuable information for the deep understanding of the difference of the microbial community and methane-producing mechanism between mesophilic and thermophilic digestion of vegetable waste.


Subject(s)
Bacteria, Anaerobic , Euryarchaeota , Microbiota , Vegetables/microbiology , Anaerobiosis , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/growth & development , Euryarchaeota/classification , Euryarchaeota/growth & development
4.
Bioresour Technol ; 297: 122460, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31784250

ABSTRACT

To investigate the effects of viscosity on the mesophilic digestion of Maotai-flavored distiller's grains, a continuous experiment was conducted in a 70 L reactor at organic loading rates of 3, 4, 5, and 6 g VS/(L·d) with and without effluent recirculation. High organic loading rates and continuous effluent recirculation increased the digestate viscosity, and high viscosity caused severe foaming, which blocked the biogas outlet pipe. Moreover, a viscosity above 782 mPa·s was proposed as an early warning indicator for foaming. A maximum volumetric biogas production rate of 1.72 L/(L·d) was accomplished by diluting the feed without effluent recirculation at a recommended organic loading rate of 5 g VS/(L·d). Proteiniphilum, Ruminococcus_2, norank_f_Synergistaceae, norank_o__DTU014, Syntrophomonas, Methanosarcina, Methanobacterium, and Methanosaeta were the dominant acidogens, syntrophic bacteria, and methanogens existed in both low and high viscosity groups. Candidatus_Methanofastidiosum capable of employing the methylated thiol reduction pathway was found only in the high viscosity system.


Subject(s)
Bioreactors , Microbiota , Anaerobiosis , Biofuels , Methane , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...