Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36757377

ABSTRACT

Photocatalytic reduction of CO2 into valuable hydrocarbon fuels is one of the green ways to solve the energy problem and achieve carbon neutrality. Exploring photocatalyst with low toxicity and high-efficiency is the key to realize it. Here we report a lead-free halide perovskite-based 0D/2D Cs3Bi2Br9/Bi2WO6 (CBB/BWO) S-scheme heterojunction for CO2 photoreduction, prepared by a facile electrostatic self-assembly approach. The CBB/BWO shows superior photoreduction of CO2 under visible light with CO generation rate of 220.1 µmol·g-1·h-1, which is ∼115.8 and ∼18.5 times higher than that of Cs3Bi2Br9 perovskite quantum dots (CBB PQDS) and Bi2WO6 nanosheets (BWO NS), respectively. The improved photocatalytic activity can be attributed to the tight 0D/2D structure and S-scheme charge transfer pathway between the Cs3Bi2Br9 PQDS and atomic layers of the Bi2WO6 NS, which shortens transmission distance of photogenerated carriers and boosts efficient separation and transfer of the carriers. This work provides insight in manufacturing potential lead-free perovskite-based photocatalysts for achieving carbon neutrality.

2.
Materials (Basel) ; 15(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36431471

ABSTRACT

To address the environmental pollution caused by nitrogen oxides, V2O5-WO3/TiO2 is widely used as a catalyst based on selective catalytic reduction (SCR) technology. However, spent SCR catalysts pose a potential hazard to the environment due to the presence of heavy metals. This problem continues to plague countries with predominantly thermal power generation, and landfills as the dominant disposal method wastes significant metal resources. Previous research into the recovery of these metal resources has received considerable attention. Here, we summarise the methods of recovery and find that research trends are beginning to move towards improving the added value of recovered products. One very promising application is photocatalysts; however, the atomic efficiency of current methods is not satisfactory. Therefore, this review first focuses on the regeneration of spent SCR catalysts and the processes used for elemental extraction to clarify what forms of V, W and Ti can be obtained from existing processes. This is followed by providing directions for the conversion of spent SCR catalysts into photocatalysts with improvements based on such processes. From a different perspective, this also provides a new resource for photocatalysts and is expected to significantly reduce the cost of photocatalyst production.

3.
Nanomaterials (Basel) ; 11(6)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205225

ABSTRACT

Superhydrophobic coatings with intelligent properties have attracted much attention because of their wide application in many fields. However, there is a limited amount of literature on superhydrophobic coatings whose wettability and adhesion can be adjusted by UV irradiation and calcination at the same time. In this study, amorphous SiO2 microspheres (A-SiO2) and nano-TiO2 particles (N-TiO2) were used to fabricate A-SiO2/N-TiO2 composites by wet grinding, and then, they were modified with polydimethylsiloxane (PDMS) and sprayed onto substrate surfaces to obtain a tunable adhesive superhydrophobic A-SiO2/N-TiO2@PDMS coating. It is worth noting that the wettability and adhesion of the coating to water droplets could be adjusted by UV irradiation and calcination. The mechanisms of the aforementioned phenomena were studied. Moreover, methyl orange solution could be degraded by the coating due to its photocatalysis. The as-prepared coating had good adaptation to different substrates and outdoor environments. Moreover, the surfaces of these coatings exhibited the same liquid repellency towards different droplets. This research provides an environmental strategy to prepare advanced self-cleaning coatings.

4.
Materials (Basel) ; 14(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069143

ABSTRACT

Modified microspheres (SiO2-M) were obtained by the hydrolytic modification of silicon dioxide (SiO2) microspheres with Na2SiO3, and then, SiO2-M was used as a carrier to prepare a composite photocatalyst (SiO2-M/TiO2) using the sol-gel method; i.e., nano-TiO2 was loaded on the surface of SiO2-M. The structure, morphology, and photocatalytic properties of SiO2-M/TiO2 were investigated. Besides, the mechanism of the effect of SiO2-M was also explored. The results show that the hydrolytic modification of Na2SiO3 coated the surface of SiO2 microspheres with an amorphous SiO2 shell layer and increased the quantity of hydroxyl groups. The photocatalytic performance of the composite photocatalyst was slightly better than that of pure nano-TiO2 and significantly better than that of the composite photocatalyst supported by unmodified SiO2. Thus, increasing the loading capacity of nano-TiO2, improving the dispersion of TiO2, and increasing the active surface sites are essential factors for improving the functional efficiency of nano-TiO2. This work provides a new concept for the design of composite photocatalysts by optimizing the performance of the carrier.

5.
Sci Rep ; 7(1): 14594, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29109444

ABSTRACT

In this paper, a highly efficient core-shell structure of TiO2(B)/anatase photocatalyst with CoP cocatalyst has been synthesized via hydrothermal processes and a mechanical milling method. The designed core-shell TiO2(B)/anatase photocatalysts exhibit excellent performance by compared with pure TiO2(B) and anatase phase. With the participation of CoP particles, there is drastically enhanced  photocatalytic activity of TiO2(B)/anatase, and the H2-production rate can be up to 7400 µmol·g-1, which is about 3.2 times higher than TiO2(B)/anatase photocatalyst. The improved activity is attributed to the contribution of the well-matched core-shell structure and cooperative effect of CoP cocatalyst. The photogenerated holes of anatase can migrate more promptly to the adjacent TiO2(B) core than the photogenerated electrons, which result in an accumulation of electrons in the anatase, and CoP nanoparticles can contribute significantly to transferring electrons from the surface of TiO2(A). It was found that the efficient separation of electron-hole pairs greatly improved the photocatalytic hydrogen evolution in water under UV light irradiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...