Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 115(1-2): 164-171, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27956013

ABSTRACT

Since 1925, dilution analysis has been used to minimize pathogenic impacts to bivalve molluscan shellfish growing areas from treated wastewater effluent in the National Shellfish Sanitation Program (NSSP). For over twenty five years, the U.S. Food and Drug Administration (FDA) has recommended a minimum of 1000:1 dilution of effluent within prohibited closure zones established around wastewater treatment plant (WWTP) discharges. During May 2010, using recent technologies, a hydrographic dye study was conducted in conjunction with a pathogen bioaccumulation study in shellfish adjacent to a WWTP discharge in Yarmouth, ME. For the first time an improved method of the super-position principle was used to determine the buildup of dye tagged sewage effluent and steady state dilution in tidal waters. Results of the improved method of dilution analysis illustrate an economical, reliable and more accurate and manageable approach for estimating the buildup and steady state pollutant conditions in coastal and estuarine waters.


Subject(s)
Bivalvia , Environmental Monitoring , Sewage , Shellfish , Wastewater , Animals , Waste Disposal, Fluid
2.
J Environ Manage ; 116: 145-55, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23298716

ABSTRACT

The Chicago Waterway System (CWS) is a 113.8 km branching network of navigable waterways controlled by hydraulic structures in which the majority of flow is treated sewage effluent and there are periods of substantial combined sewer overflow. The Illinois Pollution Control Board (IPCB) designated the majority of the CWS as Secondary Contact and Indigenous Aquatic Life Use waters in the 1970s and made small alterations to these designations in 1988. Between 1988 and 2002 substantial improvements in the pollution control and water-quality management facilities were made in the Chicago area. The results of a Use Attainability Analysis led the Illinois Environmental Protection Agency (IEPA) to propose the division of the CWS into two new aquatic life use classes with appropriate dissolved oxygen (DO) standards. To aid the IPCB in their deliberations regarding the appropriate water use classifications and DO standards for the CWS, the DUFLOW model that is capable of simulating hydraulics and water-quality processes under unsteady-flow conditions was used to evaluate integrated strategies of water-quality improvement facilities that could meet the proposed DO standards during representative wet (2001) and dry (2003) years. A total of 28 new supplementary aeration stations with a maximum DO load of 80 or 100 g/s and aerated flow transfers at three locations in the CWS would be needed to achieve the IEPA proposed DO standards 100% of the time for both years. A much simpler and less costly (≈one tenth of the cost) system of facilities would be needed to meet the IEPA proposed DO standards 90% of the time. In theory, the combinations of flow augmentation and new supplemental aeration stations can achieve 100% compliance with the IEPA proposed DO standards, however, 100% compliance will be hard to achieve in practice because of-(1) difficulties in determining when to turn on the aeration stations and (2) localized heavy loads of pollutants during storms that may yield violations of the DO standards even with an extensive network of supplemental aeration stations. Thus, because absolute DO standards that must be met 100% of the time will be difficult, if not impossible to comply with, DO standards that include a Wet Weather Limited Use (WWLU) designation based on rainfall amount triggering CSO events and a maximum duration that the WWLU could be applied should be considered to obtain a healthy ecosystem by applying water-quality improvement features that can be practically operated and maintained. Such a WWLU approach also was evaluated in this paper.


Subject(s)
Oxygen/chemistry , Water Supply , Chicago , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...