Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 277: 120244, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37353097

ABSTRACT

Physical exercise, even stress-free very-light-intensity exercise such as yoga and very slow running, can have beneficial effects on executive function, possibly by potentiating prefrontal cortical activity. However, the exact mechanisms underlying this potentiation have not been identified. Evidence from studies using pupillometry demonstrates that pupil changes track the real-time dynamics of activity linked to arousal and attention, including neural circuits from the locus coeruleus to the cortex. This makes it possible to examine whether pupil-linked brain dynamics induced during very-light-intensity exercise mediate benefits to prefrontal executive function in healthy young adults. In this experiment, pupil diameter was measured during 10 min of very-light-intensity exercise (30% V˙o2peak). A Stroop task was used to assess executive function before and after exercise. Prefrontal cortical activation during the task was assessed using multichannel functional near-infrared spectroscopy (fNIRS). We observed that very-light-intensity exercise significantly elicited pupil dilation, reduction of Stroop interference, and task-related left dorsolateral prefrontal cortex activation compared with the resting-control condition. The magnitude of change in pupil dilation predicted the magnitude of improvement in Stroop performance. In addition, causal mediation analysis showed that pupil dilation during very-light-intensity exercise robustly determined subsequent enhancement of Stroop performance. This finding supports our hypothesis that the pupil-linked mechanisms, which may be tied to locus coeruleus activation, are a potential mechanism by which very light exercise enhances prefrontal cortex activation and executive function. It also suggests that pupillometry may be a useful tool to interpret the beneficial impact of exercise on boosting cognition.


Subject(s)
Pupil , Spectroscopy, Near-Infrared , Young Adult , Humans , Spectroscopy, Near-Infrared/methods , Cognition , Executive Function/physiology , Exercise/physiology , Prefrontal Cortex/physiology
2.
J Physiol Sci ; 72(1): 23, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153491

ABSTRACT

Although it has been hypothesized that moderate to vigorous exercise immediately modulates cognition via ascending arousal system activation, such activation during very-light to light exercise has remained uncertain. Here, we aimed to uncover the exact exercise intensity necessary for ascending arousal system activation using pupillometry. The pupil diameter, psychological arousal, and ventilation during graded exercise of 26 young males were analyzed based on %[Formula: see text]. Pupils dilated with very-light exercise compared to rest, stabilized, and then drastically increased again with moderate exercise and above. Pupil dilation with very-light exercise was positively correlated with increases in psychological arousal. Thus, we have shown that there are two phases of pupil dilation during graded exercise: one with very-light exercise coinciding with psychological arousal response, and the other with moderate exercise or above similar to the ventilation increase pattern. This unique pupil dilation pattern provides physiological evidence of ascending arousal system activation with very-light exercise.


Subject(s)
Arousal , Pupil , Arousal/physiology , Cognition , Humans , Male , Pupil/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...