Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 91(15): 10016-10025, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31246004

ABSTRACT

DNA and RNA biomarkers have not progressed beyond the automated specialized clinic due to failure in the reproducibility necessary to standardize robust and rapid nucleic acid detection at the point of care, where health outcomes can be most improved by early-stage diagnosis and precise monitoring of therapy and disease prognosis. We demonstrate here a new analytical platform to meet this challenge using functional 3D hydrogels engineered from peptide and oligonucleotide building blocks to provide sequence-specific, PCR-free fluorescent detection of unlabeled nucleic acid sequences. We discriminated at picomolar detection limits (<7 pM) "perfect-match" from mismatched sequences, down to a single nucleotide mutation, buried within longer lengths of the target. Detailed characterization by NMR, TEM, mass spectrometry, and rheology provided the structural understanding to design these hybrid peptide-oligonucleotide biomaterials with the desired sequence sensitivity and detection limit. We discuss the generic design, which is based on a highly predictable secondary structure of the oligonucleotide components, as a platform to detect genetic abnormalities and to screen for pathogenic conditions at the level of both DNA (e.g., SNPs) and RNA (messenger, micro, and viral genomic RNA).


Subject(s)
Hydrogels/chemistry , Nucleic Acids/analysis , Polymerase Chain Reaction/methods , Base Pair Mismatch , Base Sequence , Limit of Detection , Nucleic Acid Hybridization , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Peptides/chemical synthesis , Peptides/chemistry , Peptides/metabolism
2.
Medchemcomm ; 8(3): 551-558, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-30108771

ABSTRACT

Natural prenylated indoles have been proposed as potential anticancer agents. To exploit this discovery for developing new peptide therapeutics, we report the first studies whereby incorporation of prenylated indoles into primary sequences has been achieved. We developed a route to synthesise Nα-Fmoc-protected tryptophan derivatives in which the prenyl group is linked to the N-indole core, using Pd(ii)-mediated C-H functionalisation of 2-methyl-2-butene. Based on the Substance P antagonist G (SPG), a well-known Small Cell Lung Cancer (SCLC) anticancer agent, we designed a new penta-peptide sequence to include a prenyl moiety on one of the tryptophan residues. The N-tert-prenylated tryptophan analogue was assembled into the pentameric peptide using standard solid phase peptide synthesis or liquid phase synthesis by fragment coupling. In vitro screening showed that the N-tert-prenylation of the indole ring on the tryptophan residue located near the C-terminal of the penta-peptide enhanced the cytotoxicity against H69 (IC50 = 2.84 ± 0.14 µM) and DMS79 (IC50 = 4.37 ± 0.44 µM) SCLC cell lines when compared with the unmodified penta-peptide (H69, IC50 = 30.74 ± 0.30 µM and DMS79, IC50 = 23.00 ± 2.07 µM) or the parent SPG sequence (IC50 > 30 µM, both cell lines). SCLC almost invariably relapses with therapy-resistant disease. The DMS79 cell line was established from a patient following treatment with a number of chemotherapeutics (cytoxan, vincristine and methotrexate) and radiation therapy. Treating DMS79 tumour-bearing nude mice provided a human xenograft model of drug resistance to test the efficacy of the prenylated peptide. A low dose (1.5 mg kg-1) of the prenylated peptide was found to reduce tumour growth by ∼30% (P < 0.05) at day 7, relative to the control group receiving vehicle only. We conclude that the availability of the Fmoc-Trp(N-tert-prenyl)-OH amino acid facilitates the synthesis of prenylated-tryptophan-containing peptides to explore their therapeutic potential.

3.
Biopolymers ; 89(1): 62-71, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17902173

ABSTRACT

Cell penetrating peptide based gene carriers are notably known for low level of gene transfer. To remedy this, as laminin receptor (LR) has been previously linked to tumor metastasis, the LR-binding domain (YIGSR) as well as a scrambled sequence (SGIYR) were added to Tat-derived peptide sequence (YIGSR-Tat and SGIYR-Tat respectively). Peptides cellular uptake was assessed with high-LR (HT1080) and low-LR (HT29) cell lines by flow cytometry. Their ability to form complexes with DNA was examined using YOPRO-1 fluorescence assay and their transfection efficiencies evaluated using a luciferase reporter gene assay. DNA complexes were formed at (+/-) charge ratios as low as 2:1. While no conclusion could be drawn on the effect of YIGSR sequence on peptides uptake in both cell lines, a significant improvement in gene transfection in HT1080 cells was achieved using YIGSR-Tat compared to Tat and SGIYR-Tat. Additionally this increased efficiency was inhibited by excess free YIGSR. No significant difference in transfection efficiency was observed between Tat, SGIYR-Tat and YIGSR-Tat based complexes in HT29 cells. These studies demonstrate that attachment of receptor-binding ligand (YIGSR) to Tat-derived peptide can improve the efficiency of gene transfer in LR-positive cells (HT1080).


Subject(s)
Oligopeptides/metabolism , Peptide Fragments/metabolism , Transfection/methods , tat Gene Products, Human Immunodeficiency Virus/metabolism , Cell Line , DNA/chemistry , DNA/metabolism , Humans , Oligopeptides/chemistry , Peptide Fragments/chemistry , Receptors, Laminin/analysis , Receptors, Laminin/metabolism , tat Gene Products, Human Immunodeficiency Virus/chemistry
4.
Biochim Biophys Acta ; 1564(1): 73-81, 2002 Aug 19.
Article in English | MEDLINE | ID: mdl-12100998

ABSTRACT

Potent cytolytic peptides with specific tethering and cloaking sites have been synthesised and used to release payload from liposomes in a quantitative manner. A functionally located cloaking site has been modified specifically by simple conjugation without adversely affecting the cytolytic properties of the peptide. The cytolytic activity of modified peptides was then efficiently (>98%) cloaked and uncloaked by ligand-protein or hapten-antibody interactions. The principle of a dual response peptide has been demonstrated using an avidin-cloaked pH-sensitive peptide. Biospecific cloaking/uncloaking provided a new sensitive (approximately 12 pmol) homogeneous diagnostic and also appears potentially suited to bioresponsively targeted release of antimicrobial, anticancer and other drugs now delivered using liposomes.


Subject(s)
Cytotoxins/administration & dosage , Peptides/administration & dosage , Amino Acid Sequence , Avidin , Biotin , Cytotoxins/chemical synthesis , Drug Delivery Systems , Hydrogen-Ion Concentration , Liposomes , Melitten/administration & dosage , Melitten/chemical synthesis , Molecular Sequence Data , Peptides/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...