Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Chemosphere ; 358: 142156, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679172

ABSTRACT

Water outages caused by elevated ammonium (NH4+-N) levels are a prevalent problem faced by conventional raw water treatment plants in developing countries. A treatment solution requires a short hydraulic retention time (HRT) to overcome nitrification rate limitation in oligotrophic conditions. In this study, the performance of polluted raw water treatment using a green downflow sponge biofilm (DSB) technology was evaluated. We operated two DSB reactors, DSB-1 and DSB-2 under different NH4+-N concentration ranges (DSB-1: 3.2-5.0 mg L-1; DSB-2: 1.7-2.6 mg L-1) over 360 days and monitored their performance under short HRT (60 min, 30 min, 20 min, and 15 min). The experimental results revealed vertical segregation of organic removal in the upper reactor depths and nitrification in the lower depths. Under the shortest HRT of 15 min, both DSB reactors achieved stable NH4+-N and chemical oxygen demand removal (≥95%) and produced minimal effluent nitrite (NO2--N). DSB system could facilitate complete NH4+-N oxidation to nitrate (NO3--N) without external aeration energy requirement. The 16S rRNA sequencing data revealed that nitrifying bacteria Nitrosomonas and Nitrospira in the reactor were stratified. Putative comammox bacteria with high ammonia affinity was successfully enriched in DSB-2 operating at a lower NH4+-N loading rate, which is advantageous in oligotrophic treatment. This study suggests that a high hydraulic rate DSB system with efficient ammonia removal could incorporate ammonia treatment capability into polluted raw water treatment process and ensure safe water supply in many developing countries.


Subject(s)
Biofilms , Bioreactors , Nitrification , Bioreactors/microbiology , Ammonium Compounds/metabolism , Water Purification/methods , Kinetics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Microbiota , Nitrites/metabolism , Bacteria/metabolism , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Nitrates/metabolism
2.
PLoS One ; 18(9): e0291742, 2023.
Article in English | MEDLINE | ID: mdl-37768925

ABSTRACT

Water quality parameters influence the abundance of pathogenic bacteria. The genera Aeromonas, Arcobacter, Klebsiella, and Mycobacterium are among the representative pathogenic bacteria identified in wastewater. However, information on the correlations between water quality and the abundance of these bacteria, as well as their reduction rate in existing wastewater treatment facilities (WTFs), is lacking. Hence, this study aimed to determine the abundance and reduction rates of these bacterial groups in WTFs. Sixty-eight samples (34 influent and 34 non-disinfected, treated, effluent samples) were collected from nine WTFs in Japan and Thailand. 16S rRNA gene amplicon sequencing analysis revealed the presence of Aeromonas, Arcobacter, and Mycobacterium in all influent wastewater and treated effluent samples. Quantitative real-time polymerase chain reaction (qPCR) was used to quantify the abundance of Aeromonas, Arcobacter, Klebsiella pneumoniae species complex (KpSC), and Mycobacterium. The geometric mean abundances of Aeromonas, Arcobacter, KpSC, and Mycobacterium in the influent wastewater were 1.2 × 104-2.4 × 105, 1.0 × 105-4.5 × 106, 3.6 × 102-4.3 × 104, and 6.9 × 103-5.5 × 104 cells mL-1, respectively, and their average log reduction values were 0.77-2.57, 1.00-3.06, 1.35-3.11, and -0.67-1.57, respectively. Spearman's rank correlation coefficients indicated significant positive or negative correlations between the abundances of the potentially pathogenic bacterial groups and Escherichia coli as well as water quality parameters, namely, chemical/biochemical oxygen demand, total nitrogen, nitrate-nitrogen, nitrite-nitrogen, ammonium-nitrogen, suspended solids, volatile suspended solids, and oxidation-reduction potential. This study provides valuable information on the development and appropriate management of WTFs to produce safe, hygienic water.


Subject(s)
Aeromonas , Arcobacter , Mycobacterium , Water Purification , Wastewater , Arcobacter/genetics , Klebsiella pneumoniae/genetics , Klebsiella/genetics , Aeromonas/genetics , RNA, Ribosomal, 16S/genetics , Escherichia coli/genetics , Mycobacterium/genetics
3.
Environ Microbiol Rep ; 15(6): 497-511, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37465846

ABSTRACT

The method of spiking synthetic internal standard genes (ISGs) to samples for amplicon sequencing, generating sequences and converting absolute gene numbers from read counts has been used only for phylogenetic markers and has not been applied to functional markers. In this study, we developed ISGs, including gene sequences of the 16S rRNA, pmoA, encoding a subunit of particulate methane monooxygenase and amoA, encoding a subunit of ammonia monooxygenase. We added ISGs to the samples, amplified the target genes and performed amplicon sequencing. For the mock community, the copy numbers converted from read counts using ISGs were equivalent to those obtained by the quantitative real-time polymerase chain reaction (4.0 × 104 versus 4.1 × 104 and 3.0 × 103 versus 4.0 × 103 copies µL-DNA-1 for 16S rRNA and pmoA genes, respectively), but we also identified underestimation, possibly due to primer coverage (7.8 × 102 versus 3.7 × 103 µL-DNA-1 for amoA gene). We then applied this method to environmental samples and analysed phylogeny, functional diversity and absolute quantities. One Methylocystis population was most abundant in the sludge samples [16S rRNA gene (3.8 × 109 copies g-1 ) and the pmoA gene (2.3 × 109 copies g-1 )] and were potentially interrelated. This study demonstrates that ISG spiking is useful for evaluating sequencing data processing and quantifying functional markers.


Subject(s)
DNA , Genes, Bacterial , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
Water Sci Technol ; 87(9): 2223-2232, 2023 May.
Article in English | MEDLINE | ID: mdl-37186626

ABSTRACT

Removal of sulfide by gas stripping using biogas produced in an internal phase-separated reactor (IPSR) was evaluated during anaerobic treatment. The IPSR consisted of upper and lower segments with a gas-liquid partitioning (GLP) valve between the sections. Wastewater was fed to the upper segment in the first stage and then to the lower segment in the second stage. The GLP valve separated the liquid phase from the gaseous phase and supplied biogas from the lower segment to the upper segment. The IPSR and a control reactor were fed with synthetic wastewater and operated in parallel under an organic loading rate of 12 kg COD/(m3 day) at 35 °C. The sulfide concentration increased to 400-600 mg S/L, which is above the previously reported 50% inhibition level for methanogenic activity. The IPSR showed higher H2S removal performance than the control reactor and removed approximately twice the H2S as the control reactor at 400 mg S/L, indicating that it can be used for the stable treatment of wastewater containing high concentrations of sulfide.


Subject(s)
Wastewater , Water Purification , Anaerobiosis , Biofuels , Waste Disposal, Fluid , Bioreactors , Sulfides , Gases
5.
Appl Microbiol Biotechnol ; 107(9): 3047-3056, 2023 May.
Article in English | MEDLINE | ID: mdl-37000227

ABSTRACT

Tetramethylammonium hydroxide (TMAH) is a known toxic chemical used in the photolithography process of semiconductor photoelectronic processes. Significant amounts of wastewater containing TMAH are discharged from electronic industries. It is therefore attractive to apply anaerobic treatment to industrial wastewater containing TMAH. In this study, a novel TMAH-degrading methanogenic archaeon was isolated from the granular sludge of a psychrophilic upflow anaerobic sludge blanket (UASB) reactor treating synthetic wastewater containing TMAH. Although the isolate (strain NY-STAYD) was phylogenetically related to Methanomethylovorans uponensis, it was the only isolated Methanomethylovorans strain capable of TMAH degradation. Strain NY-STAYD was capable of degrading methylamine compounds, similar to the previously isolated Methanomethylovorans spp. While the strain was able to grow at temperatures ranging from 15 to 37°C, the cell yield was higher at lower temperatures. The distribution of archaeal cells affiliated with the genus Methanomethylovorans in the original granular sludge was investigated by fluorescence in situ hybridization (FISH) using specific oligonucleotide probe targeting 16S rRNA. The results demonstrated that the TMAH-degrading cells associated with the genus Methanomethylovorans were not intermingled with other microorganisms but rather isolated on the granule's surface as a lone dominant archaeon. KEY POINTS: • A TMAH-degrading methanogenic Methanomethylovorans strain was isolated • This strain was the only known Methanomethylovorans isolate that can degrade TMAH • The highest cell yield of the isolate was obtained at psychrophilic conditions.


Subject(s)
Archaea , Euryarchaeota , Archaea/genetics , Archaea/metabolism , Wastewater , Sewage/chemistry , In Situ Hybridization, Fluorescence , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Bioreactors , Euryarchaeota/metabolism , Methanosarcinaceae/genetics , Anaerobiosis , Waste Disposal, Fluid/methods
6.
Microbiol Resour Announc ; 11(9): e0064522, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35976010

ABSTRACT

Here, we report a new metagenome-assembled genome (MAG) from a marine Rhizobiaceae species. The MnEN-MB40S genome was assembled from a manganese-oxidizing enrichment culture metagenome. A 4.1-Mb MAG comprising 26 contigs, with a GC content of 60.0%, was obtained. This MAG contributes to the genomic information regarding the family Rhizobiaceae.

7.
J Hazard Mater ; 440: 129764, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35986941

ABSTRACT

Monoethanolamine (MEA), a toxic organic chemical, is widely used in industries and is found in their wastewater. Anaerobic MEA degradation is an appropriate strategy to reduce energy and cost for treatment. Industry wastewaters also contain sulfate, but information on the effects of sulfate on MEA degradation is limited. Here, an up-flow anaerobic sludge blanket (UASB) for MEA-containing wastewater treatment was operated under psychrophilic conditions (18-20 ºC) to investigate the effects of sulfate on the microbial characteristics of the retained sludge. To acclimatize the sludge, the proportion of MEA in the influent (containing sucrose, acetate, and propionate) was increased from 15% to 100% of total COD (1500 mg L-1); sulfate was then added to the influent. The COD removal efficiency remained above 95% despite the increase in MEA and sulfate. However, granular sludge disintegration was observed when sulfate was increased from 20 to 330 mg L-1. Batch tests revealed that propionate and acetate were produced as the metabolites of MEA degradation. In response to sulfate acclimation, methane-producing activities for propionate and hydrogen declined, while sulfate-reducing activities for MEA, propionate, and hydrogen increased. Accordingly, acclimation and changes in dominant microbial groups promoted the acetogenic reaction of propionate by sulfate reduction.


Subject(s)
Sewage , Wastewater , Anaerobiosis , Bioreactors , Ethanolamine , Hydrogen , Methane/metabolism , Propionates , Sucrose , Sulfates , Waste Disposal, Fluid
8.
3 Biotech ; 12(9): 187, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35875177

ABSTRACT

Biogenic manganese oxides (BioMnOx) have been receiving increasing attention for the removal of environmental contaminants and recovery of minor metals from water environments. However, the enrichment of heterotrophic Mn(II)-oxidizing microorganisms for BioMnOx production in the presence of fast-growing coexisting heterotrophs is challenging. In our previous work, we revealed that polycaprolactone (PCL), a biodegradable aliphatic polyester, can serve as an effective solid organic substrate to enrich Mn-oxidizing microbial communities under seawater conditions. However, marine BioMnOx-producing bioreactor systems utilizing PCL have not yet been established. Therefore, a laboratory-scale continuous-flow PCL-packed aerated biofilm (PAB) reactor was operated for 238 days to evaluate its feasibility for BioMnOx production under seawater conditions. After the start-up of the reactor, the average dissolved Mn removal rates of 0.4-2.3 mg/L/day, likely caused by Mn(II) oxidation, were confirmed under different influent dissolved Mn concentrations (2.5-14.0 mg/L on average) and theoretical hydraulic retention time (0.19-0.77 day) conditions. The 16S rRNA gene amplicon sequencing analysis suggested the presence of putative Mn(II)-oxidizing and PCL-degrading bacterial lineages in the reactor. Two highly dominant operational units (OTUs) in the packed PCL-associated biofilm were assigned to the genera Marinobacter and Pseudohoeflea, whereas the genus Lewinella and unclassified Alphaproteobacteria OTUs were highly dominant in the MnOx-containing black/dark brown precipitate-associated biofilm formed in the reactor. Excitation-emission matrix fluorescence spectroscopy analysis revealed the production of tyrosine- and tryptophane-like components, which may serve as soluble heterotrophic organic substrates in the reactor. Our findings indicate that PAB reactors are potentially applicable to BioMnOx production under seawater conditions.

9.
Article in English | MEDLINE | ID: mdl-35535707

ABSTRACT

In the production of natural rubber, formate or acetate is added to the latex solution to coagulate the rubber; therefore, the wastewater contains high concentrations of organic acids, requiring the application of anaerobic treatment technology. In this study, a two-phase continuous flow experiment using a laboratory-scale upflow anaerobic sludge blanket (UASB) was conducted to investigate the influence of formate inflow on the microbial and physical characteristics of the retained granular sludge. In phase 1, acetate-based wastewater was used as feed, while in phase 2, formate-based wastewater was used as feed. In phase 1, the UASB exhibited high COD removal efficiency (97.2%); in addition, the retained sludge showed increased methane production from acetate and proliferation of acetate-utilizing Methanosaeta species. In phase 2, the UASB performed as well as phase 1, with 98.2% COD removal efficiency. Microbial community structure analysis confirmed that relatives of Methanobacterium formicicum present in the retained sludge were responsible for the degradation of formate in phase 2. However, decreased diameter and slight deterioration of granular sludge settleability were observed. In conclusion, formate inflow has low risk of interference with the process performance of the UASB, but it has negative effects on the physical properties of the granular sludge.


Subject(s)
Sewage , Wastewater , Anaerobiosis , Bioreactors/microbiology , Formates , Methane/metabolism , Sewage/microbiology , Waste Disposal, Fluid , Wastewater/chemistry
10.
Appl Biochem Biotechnol ; 194(4): 1425-1441, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34739702

ABSTRACT

Microbial hexavalent chromium (Cr(VI)) reduction is a promising method for Cr(VI)-laden wastewater treatment. However, the soluble organic substrate required for heterotrophic microbial Cr(VI) reduction necessitates constant supervision, and an excessive supply of soluble organic substrate can result in deterioration of the quality of the effluent. In this study, we evaluated aspen wood, a low-cost lignocellulose biomass, as a solid organic substrate for heterotrophic Cr(VI) reduction. A laboratory-scale aspen wood-packed glass column reactor inoculated with activated sludge was operated for 148 days for evaluation. Following reactor operation, an effective average dissolved Cr(VI) removal rate of 0.75 mg L-1 h-1 was confirmed under an average dissolved Cr(VI) loading rate of 0.90 mg L-1 h-1. Subsequently, 16S ribosomal ribonucleic acid gene amplicon sequencing analysis revealed that the dominant prokaryotic operational taxonomic units detected in the reactor were associated with prokaryotic lineages with the capacity for lignocellulose biodegradation, Cr compound resistance, and Cr(VI) reduction. Proteobacteria and Chloroflexi were two major prokaryotic phyla in the reactor. Our data indicate that aspen wood is an effective solid organic substrate for the development of simplified, effective, and low-cost microbial Cr(VI)-removing reactors.


Subject(s)
Bioreactors , Wood , Bioreactors/microbiology , Chromium/metabolism , Oxidation-Reduction , Sewage/microbiology , Wood/metabolism
11.
ISME J ; 16(1): 168-177, 2022 01.
Article in English | MEDLINE | ID: mdl-34285362

ABSTRACT

Sulfate-coupled anaerobic oxidation of methane (AOM) is a major methane sink in marine sediments. Multiple lineages of anaerobic methanotrophic archaea (ANME) often coexist in sediments and catalyze this process syntrophically with sulfate-reducing bacteria (SRB), but the potential differences in ANME ecophysiology and mechanisms of syntrophy remain unresolved. A humic acid analog, anthraquinone 2,6-disulfonate (AQDS), could decouple archaeal methanotrophy from bacterial sulfate reduction and serve as the terminal electron acceptor for AOM (AQDS-coupled AOM). Here in sediment microcosm experiments, we examined variations in physiological response between two co-occurring ANME-2 families (ANME-2a and ANME-2c) and tested the hypothesis of sulfate respiration by ANME-2. Sulfate concentrations as low as 100 µM increased AQDS-coupled AOM nearly 2-fold matching the rates of sulfate-coupled AOM. However, the SRB partners remained inactive in microcosms with sulfate and AQDS and neither ANME-2 families respired sulfate, as shown by their cellular sulfur contents and anabolic activities measured using nanoscale secondary ion mass spectrometry. ANME-2a anabolic activity was significantly higher than ANME-2c, suggesting that ANME-2a was primarily responsible for the observed sulfate stimulation of AQDS-coupled AOM. Comparative transcriptomics showed significant upregulation of ANME-2a transcripts linked to multiple ABC transporters and downregulation of central carbon metabolism during AQDS-coupled AOM compared to sulfate-coupled AOM. Surprisingly, genes involved in sulfur anabolism were not differentially expressed during AQDS-coupled AOM with and without sulfate amendment. Collectively, this data indicates that ANME-2 archaea are incapable of respiring sulfate, but sulfate availability differentially stimulates the growth and AOM activity of different ANME lineages.


Subject(s)
Archaea , Sulfates , Anaerobiosis , Archaea/metabolism , Geologic Sediments/microbiology , Humans , Methane/metabolism , Oxidation-Reduction , Phylogeny , Sulfates/metabolism
12.
Microbiol Resour Announc ; 10(46): e0098421, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34792378

ABSTRACT

Information about sediment microbiota affected by sediment microbial fuel cells (SMFC) is limited. A laboratory-scale SMFC was applied to a eutrophic lake sediment under closed-circuit/open-circuit conditions. We analyzed the prokaryotes in the sediment adhering to the anode material. The archaeal family Methanoperedenaceae was a predominant group under closed-circuit conditions.

13.
Biotechnol Lett ; 43(4): 813-823, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33496920

ABSTRACT

OBJECTIVE: Heterotrophic manganese (Mn)-oxidizing microorganisms responsible for biogenic manganese oxide (Bio-MnOx) production are fastidious. Their enrichment is not easily accomplished by merely adding a soluble organic substrate to non-sterile mixed cultures. The objective of this study was to evaluate polycaprolactone (PCL), an aliphatic polyester, as an effective solid organic substrate for the enrichment of marine Mn-oxidizing microorganisms. RESULTS: We successfully obtained marine microbial enrichment with the capacity for dissolved Mn removal and MnOx production using PCL as a solid organic substrate. The removal of dissolved Mn by the Mn-oxidizing enrichment culture followed first-order kinetics with a rate constant of 0.014 h-1. 16S rRNA gene amplicon sequencing analysis revealed that the Mn-oxidizing enrichment culture was highly dominated by operational taxonomic units related to the bacterial phyla Cyanobacteria, Planctomycetes, and Proteobacteria. CONCLUSIONS: Our data demonstrate that PCL can serve as a potential substrate to enrich Mn-oxidizing microorganisms with the ability to produce MnOx under marine conditions.


Subject(s)
Bacteria/classification , Manganese/chemistry , Polyesters/chemistry , Sequence Analysis, DNA/methods , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Biodegradation, Environmental , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Water Microbiology
14.
Microbiol Resour Announc ; 10(2)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33446590

ABSTRACT

We report the draft genome sequence of Cytophagales sp. strain WSM2-2, isolated from garden soil. A 5.5-Mb genome sequence comprising four contigs was successfully obtained using Illumina NovaSeq and MinION sequencers. This draft genome sequence will contribute to the genomic knowledge of the bacterial order Cytophagales.

15.
Article in English | MEDLINE | ID: mdl-32998606

ABSTRACT

Given the toxicity and widespread occurrence of hexavalent chromium [Cr(VI)] in aquatic environments, we investigated the feasibility of a down-flow hanging sponge (DHS) biofilm reactor for the enrichment of microbial communities capable of Cr(VI) removal. In the present study, a laboratory-scale DHS reactor fed with a molasses-based medium containing Cr(VI) was operated for 112 days for the investigation. The enrichment of Cr(VI)-removing microbial communities was evaluated based on water quality and prokaryotic community analyses. Once the DHS reactor began to operate, high average volumetric Cr(VI) removal rates of 1.21-1.45 mg L-sponge-1 h-1 were confirmed under varying influent Cr(VI) concentrations (approximately 20-40 mg L-1). 16S rRNA gene amplicon sequencing analysis suggested the presence of phylogenetically diverse prokaryotic lineages, including phyla that contain well-known Cr(VI)-reducing bacteria (e.g., Bacteroidetes, Firmicutes, and Proteobacteria) in the polyurethane sponge media of the DHS reactor. Therefore, our findings indicate that DHS reactors have great potential for the enrichment of Cr(VI)-removing microbial communities.


Subject(s)
Biofilms/growth & development , Bioreactors/microbiology , Chromium/analysis , Microbiota/drug effects , Water Pollutants, Chemical/analysis , Water Purification/methods , Bacteroidetes/drug effects , Firmicutes/drug effects , Polyurethanes/chemistry , Proteobacteria/drug effects , RNA, Ribosomal, 16S/genetics
16.
Pol J Microbiol ; 67(1): 59-65, 2018 Mar 09.
Article in English | MEDLINE | ID: mdl-30015425

ABSTRACT

Ureolysis-driven microbially induced carbonate precipitation (MICP) has recently received attention for its potential biotechnological applications. However, information on the enrichment and production of ureolytic microbes by using bioreactor systems is limited. Here, we report a low-tech down-flow hanging sponge (DHS) bioreactor system for the enrichment and production of ureolytic microbes. Using this bioreactor system and a yeast extract-based medium containing 0.17 M urea, ureolytic microbes with high potential urease activity (> 10 µmol urea hydrolyzed per min per ml of enrichment culture) were repeatedly enriched under non-sterile conditions. In addition, the ureolytic enrichment obtained in this study showed in vitro calcium carbonate precipitation. Fluorescence in situ hybridization analysis showed the existence of bacteria of the phylum Firmicutes in the bioreactor system. Our data demonstrate that this DHS bioreactor system is a useful system for the enrichment and production of ureolytic microbes for MICP applications.


Subject(s)
Bioreactors/microbiology , Firmicutes/growth & development , Urea/metabolism , Calcium Carbonate , Chemical Precipitation , Firmicutes/classification , In Situ Hybridization, Fluorescence , Urease/analysis
17.
Microbes Environ ; 30(3): 276-80, 2015.
Article in English | MEDLINE | ID: mdl-26156553

ABSTRACT

Markedly diverse sequences of the adenosine-5'-phosphosulfate reductase alpha subunit gene (aprA), which encodes a key enzyme in microbial sulfate reduction and sulfur oxidation, were detected in subseafloor sediments on the northwestern Pacific off Japan. The aprA gene sequences were grouped into 135 operational taxonomic units (90% sequence identity), including genes related to putative sulfur-oxidizing bacteria predominantly detected in sulfate-depleted deep sediments. Our results suggest that microbial ecosystems in the subseafloor biosphere have phylogenetically diverse genetic potentials to mediate cryptic sulfur cycles in sediments, even where sulfate is rarely present.


Subject(s)
Bacteria/classification , Bacteria/enzymology , Bacterial Proteins/genetics , Genetic Variation , Oxidoreductases Acting on Sulfur Group Donors/genetics , Phylogeny , Bacteria/genetics , Bacteria/isolation & purification , Geologic Sediments/microbiology , Japan , Molecular Sequence Data , Pacific Ocean
18.
PLoS One ; 9(8): e105356, 2014.
Article in English | MEDLINE | ID: mdl-25141130

ABSTRACT

Anaerobic oxidation of methane (AOM) in marine sediments is an important global methane sink, but the physiological characteristics of AOM-associated microorganisms remain poorly understood. Here we report the cultivation of an AOM microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor with polyurethane sponges, called the down-flow hanging sponge (DHS) bioreactor. We anaerobically incubated deep-sea methane-seep sediment collected from the Nankai Trough, Japan, for 2,013 days in the bioreactor at 10°C. Following incubation, an active AOM activity was confirmed by a tracer experiment using 13C-labeled methane. Phylogenetic analyses demonstrated that phylogenetically diverse Archaea and Bacteria grew in the bioreactor. After 2,013 days of incubation, the predominant archaeal components were anaerobic methanotroph (ANME)-2a, Deep-Sea Archaeal Group, and Marine Benthic Group-D, and Gammaproteobacteria was the dominant bacterial lineage. Fluorescence in situ hybridization analysis showed that ANME-1 and -2a, and most ANME-2c cells occurred without close physical interaction with potential bacterial partners. Our data demonstrate that the DHS bioreactor system is a useful system for cultivating fastidious methane-seep-associated sedimentary microorganisms.


Subject(s)
Archaea/metabolism , Bioreactors/microbiology , Gammaproteobacteria/metabolism , Methane/metabolism , Microbiota , Seawater/microbiology , Archaea/genetics , Archaea/growth & development , Archaea/isolation & purification , Base Sequence , Gammaproteobacteria/genetics , Gammaproteobacteria/growth & development , Gammaproteobacteria/isolation & purification , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...