Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 11(3): 231514, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481984

ABSTRACT

Coral reefs, hubs of global biodiversity, are among the world's most imperilled habitats. Healthy coral reefs are characterized by distinctive soundscapes; these environments are rich with sounds produced by fishes and marine invertebrates. Emerging evidence suggests these sounds can be used as orientation and settlement cues for larvae of reef animals. On degraded reefs, these cues may be reduced or absent, impeding the success of larval settlement, which is an essential process for the maintenance and replenishment of reef populations. Here, in a field-based study, we evaluated the effects of enriching the soundscape of a degraded coral reef to increase coral settlement rates. Porites astreoides larvae were exposed to reef sounds using a custom solar-powered acoustic playback system. Porites astreoides settled at significantly higher rates at the acoustically enriched sites, averaging 1.7 times (up to maximum of seven times) more settlement compared with control reef sites without acoustic enrichment. Settlement rates decreased with distance from the speaker but remained higher than control levels at least 30 m from the sound source. These results reveal that acoustic enrichment can facilitate coral larval settlement at reasonable distances, offering a promising new method for scientists, managers and restoration practitioners to rebuild coral reefs.

2.
J Acoust Soc Am ; 154(2): 1041-1047, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37584466

ABSTRACT

There is increasing awareness of boat sound effects on coral reef assemblages. While behavioral disturbances have been found in fishes, the effects on marine invertebrates remain largely unknown. Here, the behavioral effects of recreational boat sound on thorny oysters at two coral reef habitats within the U.S. Virgin Island National Park were assessed. The "treatment" site was characterized by frequent boat traffic, which increased daytime mean particle acceleration levels (PALrms) by more than 6 dB, while mean PALrms at the "control" site were not contaminated by boat sound. Despite these contrasting soundscapes, all oysters showed the same diurnal cycle, with their valves open at night and partially closed during the day. There was no statistical evidence of behavioral responses in oysters exposed to daytime boat sound. This can be explained by low auditory sensitivity, habituation to a noisy environment due to the pervasiveness of boat sound pollution, or that boat sound may not represent an immediate concern for this species. These findings contrast with laboratory studies that have shown behavioral responses in bivalves exposed to boat sound, highlighting the need for more realistic field-based studies when evaluating potential effects of anthropogenic sounds on this group.


Subject(s)
Bivalvia , Ostreidae , Animals , Ships , Sound , Coral Reefs , Fishes/physiology
3.
J Acoust Soc Am ; 153(1): 529, 2023 01.
Article in English | MEDLINE | ID: mdl-36732263

ABSTRACT

Marine crustaceans produce broadband sounds that are useful for passive acoustic monitoring to support conservation and management efforts. However, the propagation characteristics and detection ranges of their signals are poorly known, limiting our leveraging of these sounds. Here, we used a four-hydrophone linear array to measure source levels (SLs) and sound propagation from Caribbean spiny lobsters (Panulirus argus) of a wide range of sizes within a natural, shallow water habitat (3.3 m depth). Source level in peak-peak (SLpp) varied with body size; larger individuals produced SLpp up to 166 dB re 1 µPa. However, transmission losses (TL) were similar across all sizes, with a global fitted TL of 12.1 dB. Correspondingly, calculated detection ranges varied with body size, ranging between 14 and 364 m for small and large individuals (respectively). This increased up to 1612 m for large spiny lobsters when considering lower ambient noise levels. Despite the potential ease of tank studies, our results highlight the importance of empirical in situ sound propagation studies for marine crustaceans. Given the important ecological and economic role of spiny lobsters, these data are a key step to supporting remote monitoring of this species for fisheries management and efforts to acoustically quantify coral reefs' health.


Subject(s)
Palinuridae , Animals , Sound , Caribbean Region , Acoustics , Ecosystem
4.
J Acoust Soc Am ; 152(6): 3747, 2022 12.
Article in English | MEDLINE | ID: mdl-36586829

ABSTRACT

Marine crustaceans produce broadband sounds that have been mostly characterized in tanks. While tank physical impacts on such signals are documented in the acoustic community, they are overlooked in the bioacoustic literature with limited empirical comparisons. Here, we compared broadband sounds produced at 1 m from spiny lobsters (Panulirus argus) in both tank and in situ conditions. We found significant differences in all sound features (temporal, power, and spectral) between tank and in situ recordings, highlighting that broadband sounds, such as those produced by marine crustaceans, cannot be accurately characterized in tanks. We then explained the three main physical impacts that distort broadband sounds in tanks, respectively known as resonant frequencies, sound reverberation, and low frequency attenuation. Tank resonant frequencies strongly distort the spectral shape of broadband sounds. In the high frequency band (above the tank minimum resonant frequency), reverberation increases sound duration. In the low frequency band (below the tank minimum resonant frequency), low frequencies are highly attenuated due to their longer wavelength compared to the tank size and tank wall boundary conditions (zero pressure) that prevent them from being accurately measured. Taken together, these results highlight the importance of understanding tank physical impacts when characterizing broadband crustacean sounds.


Subject(s)
Acoustics , Sound
5.
Integr Comp Biol ; 61(5): 1658-1673, 2021 11 17.
Article in English | MEDLINE | ID: mdl-33956943

ABSTRACT

Aquatic animals have developed a wide array of adaptations specific to life underwater, many of which are related to moving in the water column. Different swimming methods have emerged, such as lift-based flapping, drag-based body undulations, and paddling. Patterns occur across scales and taxa, where animals with analogous body features use similar locomotory methods. Metachronal paddling is one such wide-spread propulsion mechanism, occurring in taxa as diverse as ctenophores, crustaceans, and polychaetes. Sequential movement of multiple, near identical appendages, allows for steady swimming through phase-offsets between adjacent propulsors. The soft-bodied, holopelagic polychaete Tomopteris has two rows of segmental appendages (parapodia) positioned on opposite sides along its flexible body that move in a metachronal pattern. The outer one-third of their elongate parapodia consist of two paddle-like pinnules that can be spread or, when contracted, fold together to change the effective width of the appendage. Along with metachronal paddling, tomopterid bodies undulate laterally, and by using high speed video and numerical modeling, we seek to understand how these two behaviors combine to generate effective swimming. We collected animals using deep-diving remotely operated vehicles, and recorded video data in shore- and ship-based imaging laboratories. Kinematics were analyzed using landmark tracking of features in the video data. We determined that parapodia are actively moved to generate thrust and pinnules are actively spread and contracted to create differences in drag between power and recovery strokes. At the same time, the body wave increases the parapodium stroke angle and extends the parapodia into undisturbed water adjacent to the body, enhancing thrust. Based on kinematics measurements used as input to a 1D numerical model of drag-based swimming, we found that spreading of the pinnules during the power stroke provides a significant contribution to propulsion, similar to the contribution provided by the body wave. We conclude that tomopterids combine two different propulsive modes, which are enabled by their flexible body plan. This makes their anatomy and kinematics of interest not only for biologists, but also for soft materials and robotics engineers.


Subject(s)
Polychaeta/physiology , Swimming , Animals , Biomechanical Phenomena , Extremities , Locomotion
SELECTION OF CITATIONS
SEARCH DETAIL
...