Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Chem ; 300: 107077, 2023 09.
Article in English | MEDLINE | ID: mdl-37515949

ABSTRACT

Gold nanoparticles are valuable photothermal agents owing to their efficient photothermal conversion, photobleaching resistance, and potential surface functionalization. Herein, we combined bioinspired membranes with in vitro assays to elicit the molecular mechanisms of gold shell-isolated nanoparticles (AuSHINs) on ductal mammary carcinoma cells (BT-474). Langmuir and Langmuir-Schaefer (LS) films were handled to build biomembranes from BT-474 lipid extract. AuSHINs incorporation led to surface pressure-area (π-A) isotherms expansion, increasing membrane flexibility. Fourier-transform infrared spectroscopy (FTIR) of LS multilayers revealed electrostatic AuSHINs interaction with head portions of BT-474 lipid extract, causing lipid chain disorganization. Limited AuSHINs insertion into monolayer contributed to hydroperoxidation of the unsaturated lipids upon irradiation, consistently with the surface area increments of ca. 2.0%. In fact, membrane disruption of irradiated BT-474 cells containing AuSHINs was confirmed by confocal microscopy and LDH leakage, with greater damage at 2.2 × 1013 AuSHINs/mL. Furthermore, the decrease in nuclei dimensions indicates cell death through photoinduced damage.


Subject(s)
Carcinoma , Metal Nanoparticles , Nanoparticles , Humans , Gold/chemistry , Nanoparticles/chemistry , Cell Line, Tumor , Lipids
2.
Analyst ; 142(15): 2717-2724, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28703248

ABSTRACT

Fluorescence-based immonoassays are widely used in several areas, ranging from basic biomedical research to disease diagnostics. A variety of new probes have been developed recently to address some limitations in typical assays performed with organic dyes. Ideally, new fluorescence tags that allow quantification with a low limit of detection are highly desired. In this work, the surface-enhanced fluorescence (SEF) phenomenon was explored in the development of tags for Immunoglobulin-M (IgM) detection. Shell-isolated gold nanoparticles (Au-SHINs) with 100 nm core size and a 10 nm silica shell were synthesized. These particles contain an outermost thin fluorescent layer of nile blue (NB) that was further coated by another 5 nm of silica (SEF tags). The outer silica shell was then functionalized with antibodies to allow the detection of IgM as in typical immunological sandwich assays. IgM concentrations down to the 10 ng mL-1 mark were successfully detected. A linear dependence between the average fluorescence intensity and the IgM concentration was found.

3.
J Nanosci Nanotechnol ; 15(3): 2495-500, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26413695

ABSTRACT

This work investigates the modification, resulting from fs-laser irradiation (150 fs, 775 nm and 1 kHz), on the structure and surface morphology of hydrogenated amorphous silicon (a-Si:H) thin films. The sample morphology was studied by performing a statistical analyzes of atomic force microscopy images, using a specially developed software that identifies and characterizes the domains (spikes) produced by the laser irradiation. For a fluence of 3.1 MJ/m2, we observed formation of spikes with smaller average height distribution, centered at around 15 nm, while for fluencies higher than 3.7 MJ/m2 aggregation of the produced spikes dominates the sample morphology. On the other hand, Raman spectroscopy revealed that a higher crystalline fraction (73%) is obtained for higher fluences (> 3.1 MJ/m2), which is accompanied by a decrease in the size of the produced crystals. Therefore, such results indicate that there is a trade-off between the spike distribution, crystallization fraction and size of the nanocrystals attained by laser irradiation, which has to be taken into account when using such approach for the development of devices.

4.
Soft Matter ; 11(30): 5995-8, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26067909

ABSTRACT

Osmotic stresses, protein insertion or lipid oxidation lead to area increase of self-assembled lipid membranes. However, methods to measure membrane expansion are scarce. Challenged by recent progress on the control of phospholipid hydroperoxidation, we introduce a method to quantitatively evaluate membrane area increase based on the bio-adhesion of Giant Unilamellar Vesicles.


Subject(s)
Lipid Bilayers/metabolism , Membrane Lipids/metabolism , Osmotic Pressure , Lipid Bilayers/chemistry , Lipid Peroxidation/genetics , Membrane Lipids/chemistry , Phosphatidylcholines/metabolism , Phospholipids/chemistry , Phospholipids/metabolism , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
5.
J Nanosci Nanotechnol ; 12(9): 7010-20, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23035427

ABSTRACT

Thin films of cobalt phthalocyanine (CoPc) were deposited onto solid substrates through physical vapor deposition (PVD) by thermal evaporation up to 60 nm thick to determine their molecular architecture and electrical properties. The growth was monitored using UV-Vis absorption spectroscopy, revealing a linear increase for absorbance versus thickness. PVD films were found in the crystalline alpha phase and with the CoPc molecules forming ca. 45 degrees in relation to the substrate surface. The film surface was fairly homogeneous at the micro and nanoscales, with the roughness at ca. 3 nm. DC and AC electrical measurements were carried out for devices built with distinct structures. Perpendicular contact was established by depositing 60 nm CoPc PVD films between indium tin oxide (ITO) and Al, forming a sandwich-type structure (ITO/CoPc/Al). The current versus DC voltage curve indicated a Schottky diode behavior with a rectification factor of 4.2. The AC conductivity at low frequencies increased about 2 orders of magnitude (10(-9) to 10(-7) S/m) with increasing DC bias (0 to 5 V) and the dielectric constant at 1 kHz was 3.45. The parallel contact was obtained by depositing 120 nm CoPc PVD film onto interdigitated electrodes, forming an IDE-structured device. The latter presented a DC conductivity of 5.5 x 10(-10) S/m while the AC conductivity varied from 10(-9) to 10(-1) S/m between 1 Hz and 1 MHz, respectively, presenting no dependence on DC bias. As proof-of-principle, the IDE-structured device was applied as gas sensor for trifluoroacetic acid (TFA).

6.
Langmuir ; 25(4): 2331-8, 2009 Feb 17.
Article in English | MEDLINE | ID: mdl-19161323

ABSTRACT

Phospholipids are widely used as mimetic systems to exploit interactions involving biological membranes and pharmacological drugs. In this work, the layer-by-layer (LbL) technique was used as a new approach to produce multilayered thin films containing biological phospholipids applied as transducers onto Pt interdigitated electrodes forming sensing units of an electronic tongue system. Low concentrations (nM level) of a phenothiazine compound were detected through impedance spectroscopy. Both negative 1,2-dipalmitoyl-sn-3-glycero-[phosphor-rac-(1-glycerol)] (DPPG) and zwitterionic l-alpha-1,2-dipalmitoyl-sn-3-glycero-phosphatidylcholine (DPPC) phospholipids were used to produce the LbL films, whose molecular architecture was monitored combining spectroscopy and microscopy at micro and nanoscales. The sensor array was complemented by Langmuir-Blodgett (LB) monolayers of DPPG and DPPC deposited onto Pt interdigitated electrodes as well. It was found that the distinct molecular architecture presented by both LbL and LB films plays a key role on the sensitivity of the sensor array with the importance of the LbL films being demonstrated by principal component analysis (PCA).


Subject(s)
Biosensing Techniques/methods , Nanostructures/chemistry , Nanotechnology/methods , Phospholipids/chemistry , Transducers , Microscopy, Atomic Force , Molecular Structure , Pharmaceutical Preparations , Spectrophotometry
7.
J Nanosci Nanotechnol ; 8(9): 4341-8, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19049023

ABSTRACT

The detection of trace amounts of phenothiazines with fast, direct methods is important for medical applications and the pharmaceutical industry. In this paper we explore the concept of an electronic tongue to detect methylene blue (MB), with a sensor array comprising 6 units. These units were a bare Pt electrode, and Pt electrodes coated with 1-layer LB films of dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylglycerol (DPPG), a 5-layer LB film of stearic acid, and 10 nm PVD films of bis benzimidazo perylene (AzoPTCD) and iron phthalocyanine (FePc). The electrical response obtained with impedance spectroscopy varied with the sensing unit, in spite of the small film thickness, thus indicating good cross-sensitivity. Upon treating the capacitance data at 1 kHz with Principal Component Analysis (PCA), the sensor array was capable of distinguishing MB solutions from ultrapure water down to 1 nM. This unprecedented high sensitivity was probably due to strong interactions between MB and DPPC and DPPG, as the sensing units of these phospholipids gave the most important contributions to the PCA plots. Such strong interaction was not manifested in the surface pressure-area isotherms of co-spread monolayers of MB and DPPC or DPPG, which emphasizes the high sensitivity of the electrical measurements in ultrathin films in contact with liquids, now widely exploited in electronic tongues.


Subject(s)
Nanoparticles/chemistry , Phenothiazines/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Benzimidazoles/chemistry , Electric Impedance , Electrochemistry/methods , Electrodes , Ferrous Compounds/chemistry , Indoles/chemistry , Methylene Blue/chemistry , Perylene/analogs & derivatives , Perylene/chemistry , Phosphatidylglycerols/chemistry , Phospholipids/chemistry , Platinum/chemistry , Principal Component Analysis , Stearic Acids/chemistry , Surface Properties
8.
Cell Death Differ ; 10(9): 997-1004, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12934074

ABSTRACT

The liver is particularly susceptible to Fas-mediated cytotoxicity. Mice given an adequate parenteral dose of agonistic anti-Fas antibody (aFas) or of FasL are known to develop a devastating liver injury and to die in a few hours. The present work shows that mice lacking TNFR1 and TNFR2 (R(-)) both survive a single dose of aFas, otherwise rapidly lethal, and develop a mild form of hepatic damage, compared to the much more severe liver injury that in a few hours strikes wild-type mice (R(+)), eventually involving increased activity of proteases of different families (caspase 3-, 8-, and 9-like, calpains, cathepsin B). Neither the overall tissue levels of Fas and FasL nor Fas expression at the hepatocyte surface are altered in the liver of R(-) animals. The DNA-binding activity of the NF-kappaB transcription factor is enhanced after aFas treatment, but much more markedly in R(-) than in R(+) mice. Bcl2, while unchanged in untreated animals, is markedly upregulated in R(-) but not in R(+) mice challenged with aFas. The requirement of a normal TNFR1/TNFR2 phenotype for full deployment of the general and liver-specific aFas toxicity in mice most likely implies that treatment with aFas in some way results in activation of the TNFalpha-TNFRs system and that this activation synergizes with Fas-mediated signals in causing the fulminant liver injury and the animal death. The precise cellular and molecular details underlying this interplay between Fas- and TNFRs-mediated signaling systems in the general and liver-specific aFas toxicity largely remain to be clarified.


Subject(s)
Antigens, CD/physiology , Apoptosis , Hepatitis, Animal/etiology , Receptors, Tumor Necrosis Factor/physiology , fas Receptor/metabolism , Animals , Antibodies/toxicity , Antigens, CD/genetics , Fas Ligand Protein , Hepatitis, Animal/metabolism , Hepatitis, Animal/pathology , Liver/pathology , Liver/ultrastructure , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor, Type I , Receptors, Tumor Necrosis Factor, Type II , Tumor Necrosis Factor-alpha/physiology , fas Receptor/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...