Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 15: 1384572, 2024.
Article in English | MEDLINE | ID: mdl-38585362

ABSTRACT

Purpose: Down syndrome (DS) is a developmental disability associated with difficulties in deglutition. The adult Ts65Dn mouse model of DS has been previously shown to have differences in measures of swallowing compared with euploid controls. However, the putative mechanisms of these differences in swallowing function are unclear. This study tested the hypothesis that the Ts65Dn genotype is associated with atypical measures of tongue muscle contractile properties, coinciding with atypical swallow function. Methods: Adult (5-month-old) Ts65Dn (n = 15 female, 14 male) and euploid sibling controls (n = 16 female, 14 male) were evaluated through videofluoroscopy swallow studies (VFSS) to quantify measures of swallowing performance including swallow rate and inter-swallow interval (ISI). After VFSS, retrusive tongue muscle contractile properties, including measures of muscle fatigue, were determined using bilateral hypoglossal nerve stimulation. Results: The Ts65Dn group had significantly slower swallow rates, significantly greater ISI times, significantly slower rates of tongue force development, and significantly greater levels of tongue muscle fatigue, with lower retrusive tongue forces than controls in fatigue conditions. Conclusion: Tongue muscle contractile properties are altered in adult Ts65Dn and coincide with altered swallow function.

2.
JCI Insight ; 8(13)2023 07 10.
Article in English | MEDLINE | ID: mdl-37219949

ABSTRACT

Human patients carrying genetic mutations in RNA binding motif 20 (RBM20) develop a clinically aggressive dilated cardiomyopathy (DCM). Genetic mutation knockin (KI) animal models imply that altered function of the arginine-serine-rich (RS) domain is crucial for severe DCM. To test this hypothesis, we generated an RS domain deletion mouse model (Rbm20ΔRS). We showed that Rbm20ΔRS mice manifested DCM with mis-splicing of RBM20 target transcripts. We found that RBM20 was mis-localized to the sarcoplasm in Rbm20ΔRS mouse hearts and formed RBM20 granules similar to those detected in mutation KI animals. In contrast, mice lacking the RNA recognition motif showed similar mis-splicing of major RBM20 target genes but did not develop DCM or exhibit RBM20 granule formation. Using in vitro studies with immunocytochemical staining, we demonstrated that only DCM-associated mutations in the RS domain facilitated RBM20 nucleocytoplasmic transport and promoted granule assembly. Further, we defined the core nuclear localization signal (NLS) within the RS domain of RBM20. Mutation analysis of phosphorylation sites in the RS domain suggested that this modification may be dispensable for RBM20 nucleocytoplasmic transport. Collectively, our findings revealed that disruption of RS domain-mediated nuclear localization is crucial for severe DCM caused by NLS mutations.


Subject(s)
Cardiomyopathy, Dilated , Humans , Mice , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , RNA Splicing , Mutation , RNA-Binding Motifs , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...