Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 799, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30778078

ABSTRACT

Enzymes accelerate the rate of chemical transformations by reducing the activation barriers of uncatalyzed reactions. For signaling enzymes, substrate recognition, binding, and product release are often rate-determining steps in which enthalpy-entropy compensation plays a crucial role. While the nature of enthalpic interactions can be inferred from structural data, the molecular origin and role of entropy in enzyme catalysis remains poorly understood. Using thermocalorimetry, NMR, and MD simulations, we studied the conformational landscape of the catalytic subunit of cAMP-dependent protein kinase A, a ubiquitous phosphoryl transferase involved in a myriad of cellular processes. Along the enzymatic cycle, the kinase exhibits positive and negative cooperativity for substrate and nucleotide binding and product release. We found that globally coordinated changes of conformational entropy activated by ligand binding, together with synchronous and asynchronous breathing motions of the enzyme, underlie allosteric cooperativity along the kinase's cycle.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Allosteric Regulation , Calorimetry/methods , Catalytic Domain , Cyclic AMP-Dependent Protein Kinases/genetics , Entropy , Models, Molecular , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...