Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Res ; 101(2): 263-277, 2023 02.
Article in English | MEDLINE | ID: mdl-36353842

ABSTRACT

Substantia nigra (SN) hyperechogenicity, viewed with transcranial ultrasound, is a risk marker for Parkinson's disease. We hypothesized that SN hyperechogenicity in healthy adults aged 50-70 years is associated with reduced short-interval intracortical inhibition in primary motor cortex, and that the reduced intracortical inhibition is associated with neurochemical markers of activity in the pre-supplementary motor area (pre-SMA). Short-interval intracortical inhibition and intracortical facilitation in primary motor cortex was assessed with paired-pulse transcranial magnetic stimulation in 23 healthy adults with normal (n = 14; 61 ± 7 yrs) or abnormally enlarged (hyperechogenic; n = 9; 60 ± 6 yrs) area of SN echogenicity. Thirteen of these participants (7 SN- and 6 SN+) also underwent brain magnetic resonance spectroscopy to investigate pre-SMA neurochemistry. There was no relationship between area of SN echogenicity and short-interval intracortical inhibition in the ipsilateral primary motor cortex. There was a significant positive relationship, however, between area of echogenicity in the right SN and the magnitude of intracortical facilitation in the right (ipsilateral) primary motor cortex (p = .005; multivariate regression), evidenced by the amplitude of the conditioned motor evoked potential (MEP) at the 10-12 ms interstimulus interval. This relationship was not present on the left side. Pre-SMA glutamate did not predict primary motor cortex inhibition or facilitation. The results suggest that SN hyperechogenicity in healthy older adults may be associated with changes in excitability of motor cortical circuitry. The results advance understanding of brain changes in healthy older adults at risk of Parkinson's disease.


Subject(s)
Cortical Excitability , Motor Cortex , Parkinson Disease , Humans , Aged , Motor Cortex/diagnostic imaging , Parkinson Disease/diagnostic imaging
2.
PLoS One ; 16(3): e0247920, 2021.
Article in English | MEDLINE | ID: mdl-33647059

ABSTRACT

BACKGROUND: Transcranial sonography is increasingly used to aid clinical diagnoses of movement disorders, for example, to identify an enlarged area of substantia nigra echogenicity in patients with Parkinson's disease. OBJECTIVE: The current study investigated characteristics of the midbrain at the anatomical plane for quantification of substantia nigra echogenicity. METHODS: Area of substantia nigra echogenicity, cross-sectional area of the midbrain, and interpeduncular angle were quantified in two groups of adults aged 18-50 years: 47 healthy non-drug-using controls (control group) and 22 individuals with a history of methamphetamine use (methamphetamine group), a cohort with a high prevalence of enlarged substantia nigra echogenicity and thus risk of Parkinson's disease. RESULTS: In the control group, cross-sectional area of the midbrain (4.47±0.44 cm2) and interpeduncular angle were unaffected by age, sex, or image acquisition side. In the methamphetamine group, cross-sectional midbrain area (4.72±0.60 cm2) and area of substantia nigra echogenicity were enlarged compared to the control group, and the enlargement was sex-dependent (larger in males than females). Whole midbrain area and interpeduncular angle were found to be weak predictors of area of substantia nigra echogenicity after accounting for group and sex. CONCLUSIONS: History of methamphetamine use is associated with an enlarged midbrain and area of substantia nigra echogenicity, and the abnormality is more pronounced in males than females. Thus, males may be more susceptible to methamphetamine-induced changes to the brainstem, and risk of Parkinson's disease, than females.


Subject(s)
Mesencephalon/diagnostic imaging , Substantia Nigra/diagnostic imaging , Ultrasonography, Doppler, Transcranial , Adolescent , Adult , Amphetamine-Related Disorders/diagnostic imaging , Female , Humans , Male , Methamphetamine , Middle Aged , Parkinson Disease/diagnostic imaging , Young Adult
3.
Neuroimage ; 147: 461-472, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28011253

ABSTRACT

PURPOSE: Molecular imaging of the D2/3 receptor is widely used in neuropsychiatric research. Non-displaceable binding potential (BPND) is a very popular quantitative index, defined as the product of the receptor concentration (Bavail) and the radiotracer affinity for the receptor (1/appKd). As the appKd is influenced by parameters such as the endogenous neurotransmitter dynamics, it often constitutes a confounding factor in research studies. A simplified method for absolute quantification of both these parameters would be of great interest in this context. Here, we describe the use of a partial saturation protocol that permits to produce an in vivo Scatchard plot and thus estimate Bavail and appKd separately, through a single dynamic SPECT session. To validate this approach, a multi-injection protocol is used for the full kinetic modeling of [123I]IBZM using a 3-tissue compartment, 7-parameter model (3T-7k). Finally, more "classic" BPND estimation methods are also validated against the results of the 3T-7k. METHODS: Twenty-nine male rats were used. Binding parameters were estimated using the 3T-7k in a multi-injection protocol. A partial saturation protocol was applied at the region- and voxel-level and results were compared to those obtained with the 3T-7k model. The partial saturation protocol was applied after an adenovirus-mediated D2 receptor striatal overexpression and in an amphetamine-induced dopamine release paradigm. The Simplified Reference Tissue Model (SRTM), the Logan's non-invasive graphical analysis (LNIGA) and a simple standardized uptake ratio (SUR) method were equally applied. RESULTS: The partial saturation experiments gave similar values as the 3T-7k both at the regional and voxel-level. After adenoviral-mediated D2-receptor overexpression, an increase in Bavail by approximately 18% was observed in the striatum. After amphetamine administration, a 16.93% decrease in Bavail (p<0.05) and a 39.12% increase (p<0.01) in appKd was observed. BPND derived from SRTM, LNIGA and SUR correlated well with the Bavail values from the 3T-7k (r=0.84, r=0.84 and r=0.83, respectively, p<0.0001 for all correlations). CONCLUSION: A partial saturation protocol permits the non-invasive and time-efficient estimation of Bavail and appKd separately. Given the different biological phenomena that underlie these parameters, this method may be applied for the in-depth study of the dopaminergic system in translational molecular imaging studies. It can detect the biological variations in these parameters, dissociating the variations in receptor density (Bavail) from affinity (1/appKd), which reflects the interactions of the receptor with its endogenous ligand.


Subject(s)
Benzamides/pharmacokinetics , Brain/metabolism , Dopamine Antagonists/pharmacokinetics , Pyrrolidines/pharmacokinetics , Receptors, Dopamine D2/metabolism , Animals , Brain/diagnostic imaging , Brain/drug effects , Male , Protein Binding , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D3/metabolism , Tomography, Emission-Computed, Single-Photon
SELECTION OF CITATIONS
SEARCH DETAIL
...