Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Transplantation ; 107(5): 1089-1101, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36398319

ABSTRACT

BACKGROUND: Increasing evidence suggest that microRNAs are involved in the physiopathology of acute or chronic renal disease. In kidney transplantation, as key regulators of cellular homeostasis, microRNAs may be involved in the regulation of immune cell function and the allograft response. Here, we investigated the change in circulating microRNA expression profile and their involvement in the profound transcriptional changes associated with antibody-mediated rejection (AMR). METHODS: Blood samples were collected at the time of the 710 kidney allograft biopsies at 4 European transplant centers. Messenger RNA and microRNA profiling analyses were performed in a discovery-to-validation study within 3 independent cohorts encompassing N = 126, N = 135, and N = 416 patients, respectively. RESULTS: Compared with samples with no AMR, 14 microRNAs were significantly decreased in AMR samples. Among them, expression levels of microRNA-15b, microRNA-106a, and microRNA-374a gradually decreased with the severity of AMR lesions. From their in silico-predicted target genes, a high proportion proved to be significantly upregulated in the paired transcriptomic analysis. Gene ontology analyses of microRNA-15b/-106a/-374a suggested enrichment in myeloid-related pathways, which was further refined by in silico and ex vivo transcriptomic analyses, showing a specific origin from classical CD14 + monocytes. Finally, human CD14 + monocytes were subjected to transduction by antago-microRNAs to mimic AMR pathology. MicroRNA-15b/-106a/-374a impairment resulted in cellular activation with an increased expression of CD69, CRIM1, IPO7, and CAAP1, direct and common targets of the 3 microRNAs. CONCLUSIONS: Together, our data provide new insights into circulating microRNAs as markers and key players in AMR, and they suggest monocyte involvement in this process.


Subject(s)
Kidney Transplantation , MicroRNAs , Humans , Kidney Transplantation/adverse effects , Monocytes/metabolism , MicroRNAs/metabolism , Transplantation, Homologous , Gene Expression Profiling/methods , Antibodies , Graft Rejection
2.
Front Immunol ; 12: 738795, 2021.
Article in English | MEDLINE | ID: mdl-34795664

ABSTRACT

In solid-organ transplantation, microRNAs (miRNAs) have emerged as key players in the regulation of allograft cells function in response to injury. To gain insight into the role of miRNAs in antibody-mediated rejection, a rejection phenotype histologically defined by microvascular inflammation, kidney allograft biopsies were subjected to miRNA but also messenger RNA (mRNA) profiling. Using a unique multistep selection process specific to the BIOMARGIN study (discovery cohort, N=86; selection cohort, N=99; validation cohort, N=298), six differentially expressed miRNAs were consistently identified: miR-139-5p (down) and miR-142-3p/150-5p/155-5p/222-3p/223-3p (up). Their expression level gradually correlated with microvascular inflammation intensity. The cell specificity of miRNAs target genes was investigated by integrating their in vivo mRNA targets with single-cell RNA sequencing from an independent allograft biopsy cohort. Endothelial-derived miR-139-5p expression correlated negatively with MHC-related genes expression. Conversely, epithelial-derived miR-222-3p overexpression was strongly associated with degraded renal electrolyte homeostasis and repressed immune-related pathways. In immune cells, miR-150-5p regulated NF-κB activation in T lymphocytes whereas miR-155-5p regulated mRNA splicing in antigen-presenting cells. Altogether, integrated omics enabled us to unravel new pathways involved in microvascular inflammation and suggests that metabolism modifications in tubular epithelial cells occur as a consequence of antibody-mediated rejection, beyond the nearby endothelial compartment.


Subject(s)
Gene Expression Profiling , Graft Rejection/genetics , Inflammation/genetics , Kidney Transplantation/adverse effects , Kidney/metabolism , MicroRNAs/genetics , RNA, Messenger/genetics , Transcriptome , Biopsy , Europe , Graft Rejection/diagnosis , Graft Rejection/immunology , Graft Rejection/metabolism , Humans , Inflammation/diagnosis , Inflammation/immunology , Inflammation/metabolism , Kidney/immunology , Kidney/pathology , MicroRNAs/metabolism , Prospective Studies , RNA, Messenger/metabolism , RNA-Seq , Single-Cell Analysis , Systems Integration , Treatment Outcome
3.
Front Immunol ; 11: 604353, 2020.
Article in English | MEDLINE | ID: mdl-33362789

ABSTRACT

BK virus (BKV) replication increases urinary chemokine C-X-C motif ligand 10 (uCXCL10) levels in kidney transplant recipients (KTRs). Here, we investigated uCXCL10 levels across different stages of BKV replication as a prognostic and predictive marker for functional decline in KTRs after BKV-DNAemia. uCXCL10 was assessed in a cross-sectional study (474 paired urine/blood/biopsy samples and a longitudinal study (1,184 samples from 60 KTRs with BKV-DNAemia). uCXCL10 levels gradually increased with urine (P-value < 0.0001) and blood BKV viral load (P < 0.05) but were similar in the viruria and no BKV groups (P > 0.99). In viremic patients, uCXCL10 at biopsy was associated with graft functional decline [HR = 1.65, 95% CI (1.08-2.51), P = 0.02], irrespective of baseline eGFR, blood viral load, or BKVN diagnosis. uCXL10/cr (threshold: 12.86 ng/mmol) discriminated patients with a low risk of graft function decline from high-risk patients (P = 0.01). In the longitudinal study, the uCXCL10 and BKV-DNAemia trajectories were superimposable. Stratification using the same uCXCL10/cr threshold at first viremia predicted the subsequent inflammatory response, assessed by time-adjusted uCXCL10/cr AUC (P < 0.001), and graft functional decline (P = 0.03). In KTRs, uCXCL10 increases in BKV-DNAemia but not in isolated viruria. uCXCL10/cr is a prognostic biomarker of eGFR decrease, and a 12.86 ng/ml threshold predicts higher inflammatory burdens and poor renal outcomes.


Subject(s)
BK Virus/pathogenicity , Chemokine CXCL10/urine , Kidney Transplantation/adverse effects , Polyomavirus Infections/diagnosis , Tumor Virus Infections/diagnosis , Virus Activation , Adult , Biomarkers/urine , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Polyomavirus Infections/urine , Polyomavirus Infections/virology , Predictive Value of Tests , Retrospective Studies , Time Factors , Treatment Outcome , Tumor Virus Infections/urine , Tumor Virus Infections/virology , Urinalysis , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...