Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(49): 55510-55519, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33258370

ABSTRACT

All-solid-state lithium-ion batteries have attracted significant research interest for providing high power and energy densities with enhanced operational safety. Despite the discoveries of solid electrolyte materials with superionic conductivities, it remains a challenge to maintain high rate capability in all-solid lithium-ion batteries in long-term operation. The observed rate degradation has been attributed to reactivity and resistance at the electrode-electrolyte interfaces. We examine interfaces formed between eight electrolytes including garnet, LiPON, and Li10GeP2S12 (LGPS) and seven electrode materials including an NCM cathode and a metallic Li anode and identify the most rapid lithium-ion diffusion pathways through metastable arrangements of product phases that may precipitate out at each interface. Our analysis accounts for possible density functional theory (DFT) error, metastability, and finite-temperature effects by statistically sampling thousands of possible phase diagrams for each interface. The lithium-ion conductivities in the product phases at the interface are evaluated using machine-learned interatomic potentials trained on the fly. In nearly all electrode-electrolyte interfaces we evaluate, we predict that lithium-ion conduction in the product phases making up the interphase region becomes the rate-limiting step for battery performance.

2.
Org Lett ; 19(12): 3275-3278, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28562059

ABSTRACT

A strong electron-accepting planar π-conjugated framework, thiadiazole-fused quinoxalineimide (TQI), was designed and synthesized. Three TQI-based small molecules exhibit deep lowest-unoccupied molecular orbital (LUMO) levels, which require air stable n-channel conduction (∼-4.0 eV). Among these molecules, Hex-TQI-Br exhibits air-stable n-channel charge transport with a moderate mobility of 0.044 cm2 V-1 s-1.

3.
ACS Appl Mater Interfaces ; 5(11): 4921-9, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23646879

ABSTRACT

Resistance switching memory devices with the configuration of poly(ethylene naphthalate)(PEN)/Al/polyimide (PI) blend/Al are reported. The active layers of the PI blend films were prepared from different compositions of poly[4,4'-diamino-4″-methyltriphenylamine-hexafluoroisopropylidenediphthalimide] (PI(AMTPA)) and polycyclic aromatic compounds (coronene or N,N-bis[4-(2-octyldodecyloxy)phenyl]-3,4,9,10-perylenetetracarboxylic diimide (PDI-DO)). The additives of large π-conjugated polycyclic compounds can stabilize the charge transfer complex induced by the applied electric field. Thus, the memory device characteristic changes from the volatile to nonvolatile behavior of flash and write-once-read-many times (WORM) as the additive contents increase in both blend systems. The main differences between these two blend systems are the threshold voltage values and the additive content to change the memory behavior. Due to the stronger accepting ability and higher electron affinity of PDI-DO than those of coronene, the PI(AMTPA):PDI-DO blend based memory devices show a smaller threshold voltage and change the memory behavior in a smaller additive content. Besides, the memory devices fabricated on a flexible PEN substrate exhibit an excellent durability upon the bending conditions. These tunable memory performances of the developed PI/polycyclic aromatic compound blends are advantageous for future advanced memory device applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...