Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(1): e0246422, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36651852

ABSTRACT

Scleractinian corals form symbiotic relationships with a variety of microorganisms, including endosymbiotic dinoflagellates of the family Symbiodiniaceae, and with bacteria, which are collectively termed coral holobionts. Interactions between hosts and their symbionts are critical to the physiological status of corals. Coral-microorganism interactions have been studied extensively, but dinoflagellate-bacterial interactions remain largely unexplored. Here, we developed a microbiome manipulation method employing KAS-antibiotic treatment (kanamycin, ampicillin, and streptomycin) to favor pigmented bacteria residing on cultured Cladocopium and Durusdinium, major endosymbionts of corals, and isolated several carotenoid-producing bacteria from cell surfaces of the microalgae. Following KAS-antibiotic treatment of Cladocopium sp. strain NIES-4077, pigmented bacteria increased 8-fold based on colony-forming assays from the parental strain, and 100% of bacterial sequences retrieved through 16S rRNA amplicon sequencing were affiliated with the genus Maribacter. Microbiome manipulation enabled host microalgae to maintain higher maximum quantum yield of photosystem II (variable fluorescence divided by maximum fluorescence [Fv/Fm]) under light-stress conditions, compared to the parental strain. Furthermore, by combining culture-dependent and -independent techniques, we demonstrated that species of the family Symbiodiniaceae and pigmented bacteria form strong interactions. Dinoflagellates protected bacteria from antibiotics, while pigmented bacteria protected microalgal cells from light stress via carotenoid production. Here, we describe for the first time a symbiotic relationship in which dinoflagellates and bacteria mutually reduce environmental stress. Investigations of microalgal-bacterial interactions further document bacterial contributions to coral holobionts and may facilitate development of novel techniques for microbiome-mediated coral reef conservation. IMPORTANCE Coral reefs cover less than 0.1% of the ocean floor, but about 25% of all marine species depend on coral reefs at some point in their life cycles. However, rising ocean temperatures associated with global climate change are a serious threat to coral reefs, causing dysfunction of the photosynthetic apparatus of endosymbiotic microalgae of corals, and overproducing reactive oxygen species harmful to corals. We manipulated the microbiome using an antibiotic treatment to favor pigmented bacteria, enabling their symbiotic microalgal partners to maintain higher photosynthetic function under insolation stress. Furthermore, we investigated mechanisms underlying microalgal-bacterial interactions, describing for the first time a symbiotic relationship in which the two symbionts mutually reduce environmental stress. Our findings extend current insights about microalgal-bacterial interactions, enabling better understanding of bacterial contributions to coral holobionts under stressful conditions and offering hope of reducing the adverse impacts of global warming on coral reefs.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Dinoflagellida/genetics , RNA, Ribosomal, 16S/genetics , Coral Reefs , Anthozoa/genetics , Anthozoa/microbiology , Bacteria , Symbiosis , Anti-Bacterial Agents/pharmacology
2.
Gene ; 765: 145116, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32896589

ABSTRACT

In contrast to most mammals including human, fish cell lines have long been known to be immortal, with little sign of cellular senescence, despite the absence of transformation. Recently, our laboratory reported that DNA demethylation with 5-aza-2'-deoxycytidine (5-Aza-dC) induces telomere-independent cellular senescence and senescence-associated secretory phenotype (SASP) in an immortal fish cell line, EPC (Epithelioma papulosum cyprini). However, it is not known how fish derived cultured cells are usually resistant to aging in vitro. In this study, we focused on Ras, which carries out the main role of Ras-induced senescence (RIS), and investigated the role of Ras in the regulation of senescence in EPC cells. Our results show that 5-Aza-dC induced the expression of the ras (hras, kras, nras) gene in EPC cells. EPC cells overexpressing HRas or its constitutively active form (HRasV12) showed p53-dependent senescence-like growth arrest and senescence-associated ß-galactosidase (SA-ß-gal) activity with a large and/or flat morphology characteristic of cell senescence. On the other hand, the SASP was not induced. These results imply that the increased expression of HRas contributes to early senescence in EPC cells, but it alone may not be sufficient for the full senescence, even if HRas is aberrantly activated. Thus, the limited mechanism of RIS may play a role in the senescence-resistance of fish cell lines.


Subject(s)
Cellular Senescence/genetics , Genes, ras/genetics , Genes, ras/physiology , Aging/genetics , Aging/metabolism , Animals , Cell Line , Cells, Cultured , Cellular Senescence/physiology , Fishes/genetics , Humans , Proto-Oncogene Proteins p21(ras)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...